Прямоугольный участок размером 48х60 покрывается плитками 6x3. Можно ли по крыть этот участок ровными рядами плитками 9х2? 8х15? Обоснуйте свой ответ. Если да, то сколько плиток для этого потребуется?
Вообще это надо начертить чтобы понять. В общем так как сечения перпендикулярны значит их радиусы перпендикулярны. в то же время перпендикулярны отрезок опущенный из центра шара в центр каждого сечения. Там образуется прямоугольник большая диагональ которого -это радиус шара из ег центра к точке на сфере, одна сторона -это Rпервого сечения, другая R второго сечения. площадь круга равна S=πr² площади сечений известны можем найти их радиусы R1=√11 R2=√14 Теперь найдем радиус шара из указанного выше прямоугольника(начерти, все увидишь) Rш=√(R1²+R2²)=√(11+14)=5 V=4πR³ш/3=4π*125/3=прибл 523 S=4πR²ш=4*π*25=приблизительно 314
Конус, К - вершина, КО- высота=радиус= R, сечение равнобедренный треугольник АКС, проводим радиусы ОА и ОС= R, треугольникАОС прямоугольный (уголАОС=90 - центральный=дугеАС), равнобедренный, АС=корень(ОА в квадрате+ОС в квадрате)=корень( R в квадрате+ R в квадрате)= R*корень2, проводим высоту ОН в треугольнике АОС =медиане=биссектрисе=1/2АС= R*корень2/2, треугольникОКН прямоугольный, КН=корень(ОК в квадрате+ОН в квадрате)=( R в квадрате+2* R в квадрате/4)= R*корень(3/2). площадь АКС=1/2*АС*КН=1/2* R*корень2* R*корень(3/2)= R*корень3/2
площади сечений известны можем найти их радиусы R1=√11 R2=√14
Теперь найдем радиус шара из указанного выше прямоугольника(начерти, все увидишь) Rш=√(R1²+R2²)=√(11+14)=5
V=4πR³ш/3=4π*125/3=прибл 523
S=4πR²ш=4*π*25=приблизительно 314