Прямоугольный треугольник изображением на снимке. АВ = 4см и САВ САВ 300 . Окружность с центром в точке A и радиусом 2см окружность с центром в точке D, катет AB-в точке E. Найдите площадь окрашенной части.
А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.
7) 90
8) 75 и 105
Объяснение:
7) Так как AD = DC, угол DCA = DAC = 45 (углы при основании AC в равнобедренном треугольнике). Следовательно, угол D = 180 - 45 - 45 = 90.
По свойству параллелограмма противолежащие углы равны, следовательно, угол В = D = 90.
Также сумма соседних углов = 180, следовательно, угол А = 180 - угол D = 180 - 90 = 90.
Угол С = 180 - угол D = 180 - 90 = 90.
8) Угол Р = 90 - угол LKP = 75.
По свойству параллелограмма, противолежащие углы равны, то есть угол N = P = 75.
По свойству параллелограмма сумма соседних углов = 180. То есть:
Угол M = K = 180 - P = 180 - N = 180 - 75 = 105
Не верное утверждение Г.
Объяснение:
А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.