Отметим середину стороны АВ через F (см.). Тогда отрезок EF делит параллелограмм ABCD на два равные параллелограммы AFED и FECB. В параллелограмме AFED отрезок AE будет диагональю. В параллелограмме FECB также проведём диагональ EB. По свойству параллелограмма диагонали делят площадь параллелограмма на 2 равные треугольники. В итоге получаем 4 равные треугольники. Если площадь треугольника ADE равна 6 кв. единиц, то площадь трапеции ABCE равна 3·6=18 кв.единиц.
т.к. KP=PM то трк равнобедренный значит PH- медиана биссектриса и высота следовательно угол KPH= углу HPM=21 градус. угол PHK=90 градусов
ответ: угол PHK=90 а угол KPH=21 градус
Задание 3
т.к. AO=OD угол BAO= углу CDO (по усл задачи)
угол AOB=углу DOC(смежные)
то треугольники равны по 2 признаку равенства
Задание 4
по условию задачи ML=MN значит трк MNL равнобедренный MD делит основание тр-ка на две равные половины значит MD биссектриса а биссектриса в равнобедренном тр-ке является и медианой и высотой
Задание 5
диаметры в круге равны значит в точке центра делятся пополам и у нас образуются 2 равнобедренных тр-ка MPN и OPK также у этих тр-ков есть вертикальные углы которые равны угол POK= углу MOH тогда треугольник POK равен тр-ку MON по 1 признаку тогда углы
Площадь трапеции ABCE равна 18 кв. единиц
Пошаговое объяснение:
Отметим середину стороны АВ через F (см.). Тогда отрезок EF делит параллелограмм ABCD на два равные параллелограммы AFED и FECB. В параллелограмме AFED отрезок AE будет диагональю. В параллелограмме FECB также проведём диагональ EB. По свойству параллелограмма диагонали делят площадь параллелограмма на 2 равные треугольники. В итоге получаем 4 равные треугольники. Если площадь треугольника ADE равна 6 кв. единиц, то площадь трапеции ABCE равна 3·6=18 кв.единиц.
задание 1
ответы: 3 4
задание 2
т.к. KP=PM то трк равнобедренный значит PH- медиана биссектриса и высота следовательно угол KPH= углу HPM=21 градус. угол PHK=90 градусов
ответ: угол PHK=90 а угол KPH=21 градус
Задание 3
т.к. AO=OD угол BAO= углу CDO (по усл задачи)
угол AOB=углу DOC(смежные)
то треугольники равны по 2 признаку равенства
Задание 4
по условию задачи ML=MN значит трк MNL равнобедренный MD делит основание тр-ка на две равные половины значит MD биссектриса а биссектриса в равнобедренном тр-ке является и медианой и высотой
Задание 5
диаметры в круге равны значит в точке центра делятся пополам и у нас образуются 2 равнобедренных тр-ка MPN и OPK также у этих тр-ков есть вертикальные углы которые равны угол POK= углу MOH тогда треугольник POK равен тр-ку MON по 1 признаку тогда углы
OMN=OHM=OPK=OKP=40 градусов
Объяснение: