В / | \ / | \ / | \ / | \ / | \ А / |___ \ С Н Предположим, что это равносторонний треугольник) Проводим высоту ВН, так как треугольник равносторонний, то она является и высотой, и биссектрисой, и медианой В равностороннем треугольнике все углы = 60° ВН - проекция Нам известна сторона треугольника АВ = а, тогда ВН=(а×√3)/2 ответ: а√3/2
/ | \
/ | \
/ | \
/ | \
/ | \
А / |___ \ С
Н
Предположим, что это равносторонний треугольник)
Проводим высоту ВН, так как треугольник равносторонний, то она является и высотой, и биссектрисой, и медианой
В равностороннем треугольнике все углы = 60°
ВН - проекция
Нам известна сторона треугольника АВ = а, тогда ВН=(а×√3)/2
ответ: а√3/2
(далее значок градуса не буду писать
угол В=180-30-105=45
2. проведем высоту CD к стороне AB(D принадлежит AB)
3. рассмотрим треугольник ADC
Угол DAC+CDA+DCA=180°
угол DCA= 180-90-30=60
в прямоугольном треугольнике(ADC) напротив угла=30° лежит катет в 2 раза меньше гипотенузы →DC=1 см
по теореме Пифагора:
DA²=2²-1²
DA²=3
DA=√3 см
3. рассмотрим треугольник DBC
сумма углов 180°
угол BCD=180-90-45= 45°
угол DBC=BCD, значит треугольник DBC равнобедренный, тк у него углы при основании равны. Значит CD=DB
DC=1 по ранее найденному, значит DB=1 см
по теореме Пифагора
BC²=1²+1²
BC²=2
BC=√2
4. AB=DA+DB
AB=√3+1
5. угол B=45°
AB=1+√3 см
ВС=√2
ответ:(5 пункт)