Однажды красивая и стройная биссектриса решила пройтись по белоснежным полям и посмотреть мир. Она была легка и воздушна. Ее шаги никто не замечал. Лишь нерадивый ученик ,который решал задачи по геометрии ,увидел ее и вздрогнул. Он испугался, что сейчас она заметит задания,где он не провел биссектрису углов и не смог начертить прямой угол. Он схватил линейку и карандаш и ей , что сейчас все сделает. Он полистал учебник, прищурил глаз и улыбнулся биссектрисе. Мальчик понял, как нужно было ее проводить,да и сама биссектриса ему она присела на линейку и проехалась по всем углам ему построить прямой угол , развернутый,смежные углы и вертикальные. Она сидела уже не на линейке, а пересела на ручку, пока мальчик чертил углы.Она лишь подсказывала ему как нужно было верно начертить все углы. А потом, она просто улетела и быстро исчезла из вида,как будто ее и не было , но на листах в тетраде она осталась, все такая же красивая, ровная, тонкая и стройная.
Если нельзя применить теоремы синусов и косинусов, то, скорее всего, можно применить теорему Пифагора.
Пусть высота треугольника АВС из точки А равна Н.
Опустим из основания биссектрисы перпендикуляр h на сторону ВС.
Из подобия треугольников имеем h/H = 4/20 = 1/5,
По Пифагору находим:
Н = √(20² - (5/2)²) = √(400 - (25/4) = √(375/4) = 15√7/2.
Теперь получаем: h = (1/5)*(15√7/2) = 3√7/2.
Длину биссектрисы L тоже определяем по Пифагору.
Проекция её на ВС равна (5/2) + (4/5)*(5/2) = 9/2.
L = √((9/2)² + h²) = √((81/4) + (63/4)) = √(144/4 = √36 = 6.
ответ: длина биссектрисы равна 6.