Прямая касается окружности с центром о в точке м на касательной по разные стороны от точки м отметили точки К и Р такие что угол МОК=МОР Найдите угол ОКМ если угол ОРМ=48 градусов
АBCD - равнобедренная трапеция. BC - 30 см. AD - 72 см. AB=CD=75 см (т.к равнобедренная трап.) Проведем две высоты в трапеции, например BM и CH. если вся сторона АD = 72 см, следовательно благодаря тому, что мы провели высоты, MH=BC=30 см, следовательно, чтобы найти АМ и НD нам нужно (72-30) : 2 = 42 : 2 = 21. далее рассмотрим треугольник СНD. мы уже знаем, что СD = 75 см (по условию), а HD = 21 см. третью сторону мы можем узнать, используя теорему Пифагора, она же и будет являться высотой трапеции. СН²=75²-21²=5625-441= 5184 СН= корень из 5184= 72 (см) ответ: высота трапеции= 72 см.
Стороны треугольника в перпендикулярном сечении будут высотами параллелограммов, составляющих боковую поверхность. Поэтому надо найти периметр этого треугольника, и умножить его на длину бокового ребра 15, получится ответ. 1) Для начала надо внимательно рассмотреть треугольник со сторонами 12, 17, 25. Этот треугольник подобен перпендикулярному сечению. Площадь такого треугольника равна 90. Это очень просто сосчитать по формуле Герона. p = (12 + 17 + 25)/2 = 27; p - 12 = 15; p - 17 = 10; p - 25 = 2; S^2 = 27*15*10*2 = (9*5*2)^2 = 90^2; S = 90; (само собой, лично я ничего такого не делал, что же я, совсем глупый, что-ли? - по формуле Герона считать... Этот треугольник очевидно равен "разности" двух Пифагоровых треугольников - со сторонами (15, 20, 25) и (8, 15, 17), поэтому высота к стороне 12 равна 15, и площадь 12*15/2 = 90; даже ручка не нужна...) 2) По условию, площадь перпендикулярного сечения в 4 раза больше, поэтому его стороны больше в 2 раза, и периметр - тоже. P = (12 + 17 + 25)*2 = 108; 3) Площадь боковой поверхности призмы 108*15 = 1620;
BC - 30 см.
AD - 72 см.
AB=CD=75 см (т.к равнобедренная трап.)
Проведем две высоты в трапеции, например BM и CH.
если вся сторона АD = 72 см, следовательно благодаря тому, что мы провели высоты, MH=BC=30 см, следовательно, чтобы найти АМ и НD нам нужно (72-30) : 2 = 42 : 2 = 21.
далее рассмотрим треугольник СНD.
мы уже знаем, что СD = 75 см (по условию), а HD = 21 см.
третью сторону мы можем узнать, используя теорему Пифагора, она же и будет являться высотой трапеции.
СН²=75²-21²=5625-441= 5184
СН= корень из 5184= 72 (см)
ответ: высота трапеции= 72 см.
1) Для начала надо внимательно рассмотреть треугольник со сторонами 12, 17, 25. Этот треугольник подобен перпендикулярному сечению.
Площадь такого треугольника равна 90. Это очень просто сосчитать по формуле Герона.
p = (12 + 17 + 25)/2 = 27; p - 12 = 15; p - 17 = 10; p - 25 = 2;
S^2 = 27*15*10*2 = (9*5*2)^2 = 90^2;
S = 90;
(само собой, лично я ничего такого не делал, что же я, совсем глупый, что-ли? - по формуле Герона считать... Этот треугольник очевидно равен "разности" двух Пифагоровых треугольников - со сторонами (15, 20, 25) и (8, 15, 17), поэтому высота к стороне 12 равна 15, и площадь 12*15/2 = 90; даже ручка не нужна...)
2) По условию, площадь перпендикулярного сечения в 4 раза больше, поэтому его стороны больше в 2 раза, и периметр - тоже.
P = (12 + 17 + 25)*2 = 108;
3) Площадь боковой поверхности призмы 108*15 = 1620;