Прямая BK перпендикулярна к сторонам AB и BC квадрата ABCD, О- точка пересечения диагоналей квадрата, М - произвольная точка диагонали АС. Какой из указанных треугольников не является прямоугольным? 1) BMK 2) OKC 3) KMC 4) AOK с пояснением
Берёшь циркуль, по линейке или тетрадным клеткам отмеряешь 2 см (не забудь, что 1 клетка = 0,5 см). Выбираешь любую точку в тетради, в которую будешь ставить иголку циркуля, — это цент окружности (точка О), отмечаешь его. Ставишь циркуль иголкой в эту точку, рисуешь окружность. Диаметр - это хорда, проходящая через центр окружности. Ведёшь прямую от одной точки контура этой окружности до другой через центр (точку О). Один конец получившегося отрезка называешь В, другой называешь D. Диаметр равен двум радиусам, то есть AC =4 см. Отмеряешь 3,5 см циркулем, ставишь в любую точку контура окружности, проводишь дугу так, чтобы она пересекала контур окружности. В эту точку пересечения ведёшь прямую из той точки, откуда проводил(а) дугу. Один конец получившегося отрезка называешь М, другой конец называешь N
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Объяснение:
Пошаговое объяснение:
Берёшь циркуль, по линейке или тетрадным клеткам отмеряешь 2 см (не забудь, что 1 клетка = 0,5 см). Выбираешь любую точку в тетради, в которую будешь ставить иголку циркуля, — это цент окружности (точка О), отмечаешь его. Ставишь циркуль иголкой в эту точку, рисуешь окружность. Диаметр - это хорда, проходящая через центр окружности. Ведёшь прямую от одной точки контура этой окружности до другой через центр (точку О). Один конец получившегося отрезка называешь В, другой называешь D. Диаметр равен двум радиусам, то есть AC =4 см. Отмеряешь 3,5 см циркулем, ставишь в любую точку контура окружности, проводишь дугу так, чтобы она пересекала контур окружности. В эту точку пересечения ведёшь прямую из той точки, откуда проводил(а) дугу. Один конец получившегося отрезка называешь М, другой конец называешь N
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.