Биссектриса треугольника делит противоположную сторону на отрезки пропорциональные двум другим сторонам, т.е.: и Пусть EB = x, BD = y. Получим 2 уравнения:
EB = 16; BD = 18, тогда АВ = 20 + 16 = 36 ВС = 30 + 18 = 48 Заметим, как относятся стороны треугольника АВС: АВ : ВС : АС = 60 : 48 : 36 = 5 : 4 : 3 - египетский треугольник, т.е. ΔАВС - прямоугольный с прямым углом В. Тогда ΔЕВD - так же прямоугольный, его катеты равны 16 и 18, найдем гипотенузу ED:
Площадь прямоугольного ΔЕВD: S = EB * BD /2 = 16*18/2 = 144 Полупериметр ΔЕВD: p = (EB + BD + ED)/2 = (16+18+2√145)/2 = (34 + 2√145)/2 = 17 + √145 радиус вписанной окружности: r = S / p = 144/(17+√145) = 17-√145
Сектор - часть круга. Длина дуги сектора вычисляется по формуле: L=π*r*n/180°. В нашем случае n=90°, L=π*r/2. Заметим, что в этой формуле r = l - образующая конуса, а L - это длина окружности нашего конуса. Радиус окружности основания конуса находим поформуле: L=2π*R или в нашем случае π*r/2=2π*R, отсюда R=π*r/(2*2π)=r/4. Теперь рассмотрим осевое сечение конуса. Это равнобедренный треугольник с боковыми сторонами - образующей конуса и основанием - диаметром окружности основания конуса. Причем высота конуса SH - это и биссектриса и медиана этого треугольника. В прямоугольном треугольнике SHC синус угла HSC равен отношению противолежащего катета (R) к гипотенузе (l=r) или Sin(<HSC)=(r/4)/r=1/4. Заметим, что <HSC - это половина искомого угла при вершине конуса (так как SH - биссектриса). По формуле Sinα=2Sin(α/2)*Cos(α/2) найдем искомый угол α. Cosα=√(1-sin²α)=√(1-1/16)=√15/4. Sinα=2*(1/4)*(√15/4)=√15/8. ответ: угол при вершине конуса равен arcsin(√15/8). α≈29°
Можно найти угол при вершине по теореме косинусов: Cosα=(a²+b²-c²)/2ab, где угол α - угол между сторонами a и b. В нашем случае a=b=r, c=2R=r/2. Тогда Cosα=(2r²-r²/4)/2r²=7r²/8r²=0,875. α=arccos0,875 или α≈29°.
и
Пусть EB = x, BD = y. Получим 2 уравнения:
EB = 16; BD = 18, тогда
АВ = 20 + 16 = 36
ВС = 30 + 18 = 48
Заметим, как относятся стороны треугольника АВС:
АВ : ВС : АС = 60 : 48 : 36 = 5 : 4 : 3 - египетский треугольник, т.е. ΔАВС - прямоугольный с прямым углом В.
Тогда ΔЕВD - так же прямоугольный, его катеты равны 16 и 18, найдем гипотенузу ED:
Площадь прямоугольного ΔЕВD:
S = EB * BD /2 = 16*18/2 = 144
Полупериметр ΔЕВD:
p = (EB + BD + ED)/2 = (16+18+2√145)/2 = (34 + 2√145)/2 = 17 + √145
радиус вписанной окружности:
r = S / p = 144/(17+√145) = 17-√145
L=π*r*n/180°.
В нашем случае n=90°, L=π*r/2. Заметим, что в этой формуле
r = l - образующая конуса, а L - это длина окружности нашего конуса. Радиус окружности основания конуса находим поформуле: L=2π*R или в нашем случае π*r/2=2π*R, отсюда R=π*r/(2*2π)=r/4.
Теперь рассмотрим осевое сечение конуса.
Это равнобедренный треугольник с боковыми сторонами - образующей конуса и основанием - диаметром окружности основания конуса.
Причем высота конуса SH - это и биссектриса и медиана этого треугольника.
В прямоугольном треугольнике SHC синус угла HSC равен отношению
противолежащего катета (R) к гипотенузе (l=r) или Sin(<HSC)=(r/4)/r=1/4.
Заметим, что <HSC - это половина искомого угла при вершине конуса (так как SH - биссектриса).
По формуле Sinα=2Sin(α/2)*Cos(α/2) найдем искомый угол α.
Cosα=√(1-sin²α)=√(1-1/16)=√15/4.
Sinα=2*(1/4)*(√15/4)=√15/8.
ответ: угол при вершине конуса равен arcsin(√15/8).
α≈29°
Можно найти угол при вершине по теореме косинусов:
Cosα=(a²+b²-c²)/2ab, где угол α - угол между сторонами a и b.
В нашем случае a=b=r, c=2R=r/2.
Тогда Cosα=(2r²-r²/4)/2r²=7r²/8r²=0,875. α=arccos0,875 или α≈29°.