Давай, равнобокая трапеция это равнобедренная трапеция, боковые стороны равны
1)Обозначим ее АВСД АД -нижнее основание ВС- верхнее
опустим высоту из вершины В на нижнее основание , получаем прямоугольный треугольник АНВ у которого угол А = 60 ( по условию) , значит другой угол этого треугольника = 30 градусов ( сумма острых углов в прямоугольном треугольнике = 90 градусов)
2)По условию боковая сторона = 4 = АВ , есть правило что катет лежащий против угла в 30 градусов равен половине гипотенузы,следовательно, АН= 1/2 АВ то есть = 2
3)Опустим высоту из вершины С , назовем СР, треугольники АНВ= СРД ( по 1 признаку) , значит стороны АН=РД=2
4) Вся сторона АД= 12, а ВС= НР значит отнимаем от АД-АН-РД= 8
Давай, равнобокая трапеция это равнобедренная трапеция, боковые стороны равны
1)Обозначим ее АВСД АД -нижнее основание ВС- верхнее
опустим высоту из вершины В на нижнее основание , получаем прямоугольный треугольник АНВ у которого угол А = 60 ( по условию) , значит другой угол этого треугольника = 30 градусов ( сумма острых углов в прямоугольном треугольнике = 90 градусов)
2)По условию боковая сторона = 4 = АВ , есть правило что катет лежащий против угла в 30 градусов равен половине гипотенузы,следовательно, АН= 1/2 АВ то есть = 2
3)Опустим высоту из вершины С , назовем СР, треугольники АНВ= СРД ( по 1 признаку) , значит стороны АН=РД=2
4) Вся сторона АД= 12, а ВС= НР значит отнимаем от АД-АН-РД= 8
ответ :8
S=πRl+πR², ( l образующая)
Sполн.пов.=πR*(l+R)
1. сечение конуса - равнобедренный прямоугольный треугольник: гипотенуза - хорда х=6, катеты - образующие конуса l.
по теореме Пифагора:
x²=l²+l², 6²=l²+l², l²=18, l=3√2
2. осевое сечение конуса - равнобедренный треугольник основание - диаметр основания конуса d, боковые стороны - образующие конуса l.
по теореме косинусов: d²=l²+l²-2*l*l*cos120°
d²=18+18-2*√18*√18*(-1/2)
d²=54, d=3√6. R=1,5√6
S=π*1,5(√6*3√2+1,5)=1,5*π*(6√2+1,5)
S=1,5π*(6√2+1,5)