Дано АВСД - ромб ВН перпендикулярно АД АН=НД ВД=12 Найти углы А,В,С.Д и Р авсд Решение Рассмотрим треугольник АВД. Так как высота ВН делит его основание пополам - треугольник равнобедренный ( боковые стороны равны) АД=ВД=12. У ромба все стороны равны АВ=ВС=СД=АД=12 см Периметр равен сумме всех сторон т.е. 48 см. Рассмотрим треугольник АВН - прямоугольный АН= 1/2 гипотенузы АВ. следовательно угол АВН = 30 градусов. угол А= 180-30-90=60 Сумма углов при основании параллелограмма равна 180 угол Д=120. Противоположные углы равны. угол А=углу С=60 угол Д=углу В=120
Отрезок пересекает плоскость под углом. Продолжим перпендикуляр к плоскости из одной его точки до точки, соединив которую с другим концом отрезка, получим отрезок, перпендикулярный проекции, длину которой нам надо выяснить. Заодно этот отрезок будет стороной большого прямоугольного треугольника, гипотенуза которого равна 15, одна сторона, перпендикулярная плоскости равна сумме 3 и 6 см (катет), и еще одна сторона - та, которую мы ищем.
(3+6) в квадрате+(проекция отрезка на плоскость) в квадрате=15 в квадрате. 81+х в квадрате=225 х в квадрате = 144 х=12 - ответ.
ВН перпендикулярно АД
АН=НД
ВД=12
Найти углы А,В,С.Д и Р авсд
Решение
Рассмотрим треугольник АВД. Так как высота ВН делит его основание пополам - треугольник равнобедренный ( боковые стороны равны) АД=ВД=12. У ромба все стороны равны АВ=ВС=СД=АД=12 см Периметр равен сумме всех сторон т.е. 48 см.
Рассмотрим треугольник АВН - прямоугольный АН= 1/2 гипотенузы АВ. следовательно угол АВН = 30 градусов. угол А= 180-30-90=60 Сумма углов при основании параллелограмма равна 180 угол Д=120. Противоположные углы равны. угол А=углу С=60 угол Д=углу В=120
(3+6) в квадрате+(проекция отрезка на плоскость) в квадрате=15 в квадрате.
81+х в квадрате=225
х в квадрате = 144
х=12 - ответ.