Объём пирамиды=1/3*площадь основани*высота пирамиды. основание - правильный треугольник со стороной 6 см, значит 1/4корень из 3*сторону в квадрате=1/4корень из 3*6 в квадрате=9корен из 3. высота пирамиды. если её провести к высоте основания, то получиться прямой треугольник со стороной 60 градусов у основания и 30 - у вершины. Сторона против угла в 60 градусов=половине гипотенузы т. е. гипотенуза - боковое ребро, следовательно 6/2 = 3. Высота пирамиды - это катет этого прямого треугольника = 3. площадь = 1/3*9корень из 3*3=9корень из 3
1) 52°
2) 136°
3) 70°
Объяснение:
1) Рассмотрим треугольник ABC.
Внешний угол в треугольнике равен сумме двух внутренних углов не смежных с ним.
∠ABC+∠BCA=100° => ∠BCA=100°-∠ABC
∠ABC=48°
∠BCA=100°-48°=52°
2) Рассмотрим прямоугольный треугольник ABC с прямым углом в вершине A. Тогда ∠ABC=46°
Внешний угол в треугольнике равен сумме двух внутренних углов не смежных с ним.
=> внешний угол = ∠ABC+ ∠BAC = 46°+90°=136°
3) Рассмотрим треугольник ABC, AB=BC. Тогда ∠BAC=∠BCA
Внешний угол в треугольнике равен сумме двух внутренних углов не смежных с ним.
∠BAC=∠BCA, ∠BAC+∠BCA=140 ° => 2*∠BAC=140° => ∠BAC=70°
основание - правильный треугольник со стороной 6 см, значит 1/4корень из 3*сторону в квадрате=1/4корень из 3*6 в квадрате=9корен из 3.
высота пирамиды. если её провести к высоте основания, то получиться прямой треугольник со стороной 60 градусов у основания и 30 - у вершины. Сторона против угла в 60 градусов=половине гипотенузы т. е. гипотенуза - боковое ребро, следовательно 6/2 = 3. Высота пирамиды - это катет этого прямого треугольника = 3.
площадь = 1/3*9корень из 3*3=9корень из 3