Пряма дотикается до кола з центром O у точці A. На дотичній по різні боки від точки A позначені точки B і C так що OB=OC. Знайдіть відрізок AB якщо AC-6 см
Если радиус равен 2 √3 тогда длина хорды, стянутой дугой в 60 градусов будет равна радиусу так как образуется равносторонний треугольник если соединить края хорды с центром окружности в основании конуса. Если высота конуса равна 4√3 то высота треугольника , образованного в разрезе будет определяться по теореме Пифагора из треугольника образованного высотой конуса, высотой треугольника полученного в разрезе и высотой равностороннего треугольника полученного в результате соединения краев хорды с центром основания. Высота треугольника лежащего в основании конуса будет равна 3
Следовательно по теореме Пифагора высота разреза будет равна √(9+48)
Теперь чтоб узнать площадь разреза нужно найти площадь треугольника полученного в разрезе , а это произведение высоты √57 на основание 2 √3 и делим пополам. Получаем площадь разреза 3√19
P = 2x + y (x - боковые стороны, y - основание) y = 96, P = 196 - дано в условии, найдем x 2X=P-y x= (P-y)/2 x=50
итого: x = 50, y = 96 нам не хватает высоты, для нахождения площади. Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана) по теореме Пифагора h = √(x^2 - (y/2)^2) h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h тогда: S=1/2*hy = 96*14/2 = 672. ответ: 672
Если радиус равен 2 √3 тогда длина хорды, стянутой дугой в 60 градусов будет равна радиусу так как образуется равносторонний треугольник если соединить края хорды с центром окружности в основании конуса. Если высота конуса равна 4√3 то высота треугольника , образованного в разрезе будет определяться по теореме Пифагора из треугольника образованного высотой конуса, высотой треугольника полученного в разрезе и высотой равностороннего треугольника полученного в результате соединения краев хорды с центром основания. Высота треугольника лежащего в основании конуса будет равна 3
Следовательно по теореме Пифагора высота разреза будет равна √(9+48)
Теперь чтоб узнать площадь разреза нужно найти площадь треугольника полученного в разрезе , а это произведение высоты √57 на основание 2 √3 и делим пополам. Получаем площадь разреза 3√19
y = 96, P = 196 - дано в условии, найдем x
2X=P-y
x= (P-y)/2
x=50
итого: x = 50, y = 96
нам не хватает высоты, для нахождения площади.
Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана)
по теореме Пифагора
h = √(x^2 - (y/2)^2)
h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h
тогда: S=1/2*hy = 96*14/2 = 672.
ответ: 672