Провести исследования по размеру обуви нескольких одноклассников. Найти медиану, размах,моду, среднее арифметическое. Построить диаграммы, гистограмму, полигон.
Якщо один із кутів рівнобедреного трикутника дорівнює 110 градусів, то це не кут при основі, бо кути при основі рівні, а двох кутів з градусною мірою 110° у трикутнику бути не може, бо сума кутів трикутника дорівнює 180°, а 110° + 110° = 220°, 220° > 180°. Отже, кут з градусною мірою 110° знаходится при вершині рівнобедреного трикутника, не торкаючись основи. Тоді один з кутів при основі візьмемо за х, і маємо рівняння — 110° + х + х = 180°. Розв'яжемо — 110° + х + х = 180°, 110° + 2х = 180°, 2х = 180° - 110°, 2х = 70° , х = 70°/2, х = 35°. Отже, кути при основі — це 35° і 35°, а кут при вершині — 110°.
Бісектриса кута прямокутника ділить його сторону на два відрізки. Один із вiдрiзкiв, який не є стороною утвореного прямокутного трикутника, дорівнює 5 см. Знайти сторони прямокутника, якщо його периметр дорівнює 22 см.
Прямокутником називають такий паралелограм у якого всі кути прямі.
Властивості прямокутника:
У прямокутнику протилежні сторони рівні.
Формула периметру прямокутника має вигляд:
P=2(a+b).
a і b - сторони прямокутника.
Маємо прямокутник ABCD, AB||DC і AD||BC, AЕ – бісектриса. За умовою ЕС=5 см.
Оскільки AЕ – бісектриса, то ∠BAЕ=∠ЕAD.
За ознакою паралельності прямих (AD||BC), як перетнуті січною AЕ, маємо ∠AЕB=∠ЕAD.
Тому ∠BAЕ=∠AЕB. Звідси слідує (за теоремою), що ΔABЕ– рівнобедрений з основою AЕ і бічними сторонами AB і BЕ, тому (за означенням) AB=BЕ= х см.
Кути трикутника — 35°, 35° і 110°.
Объяснение:
Якщо один із кутів рівнобедреного трикутника дорівнює 110 градусів, то це не кут при основі, бо кути при основі рівні, а двох кутів з градусною мірою 110° у трикутнику бути не може, бо сума кутів трикутника дорівнює 180°, а 110° + 110° = 220°, 220° > 180°. Отже, кут з градусною мірою 110° знаходится при вершині рівнобедреного трикутника, не торкаючись основи. Тоді один з кутів при основі візьмемо за х, і маємо рівняння — 110° + х + х = 180°. Розв'яжемо — 110° + х + х = 180°, 110° + 2х = 180°, 2х = 180° - 110°, 2х = 70° , х = 70°/2, х = 35°. Отже, кути при основі — це 35° і 35°, а кут при вершині — 110°.
Сторони прямокутника: 3 см і 8 см
Объяснение:
Бісектриса кута прямокутника ділить його сторону на два відрізки. Один із вiдрiзкiв, який не є стороною утвореного прямокутного трикутника, дорівнює 5 см. Знайти сторони прямокутника, якщо його периметр дорівнює 22 см.
Прямокутником називають такий паралелограм у якого всі кути прямі.
Властивості прямокутника:
У прямокутнику протилежні сторони рівні.Формула периметру прямокутника має вигляд:
P=2(a+b).a і b - сторони прямокутника.
Маємо прямокутник ABCD, AB||DC і AD||BC, AЕ – бісектриса. За умовою ЕС=5 см.
Оскільки AЕ – бісектриса, то ∠BAЕ=∠ЕAD.
За ознакою паралельності прямих (AD||BC), як перетнуті січною AЕ, маємо ∠AЕB=∠ЕAD.
Тому ∠BAЕ=∠AЕB. Звідси слідує (за теоремою), що ΔABЕ– рівнобедрений з основою AЕ і бічними сторонами AB і BЕ, тому (за означенням) AB=BЕ= х см.
ВС = ВЕ+ЕС = (х + 5) см
Знайдемо периметр паралелограма:
Р = 2*(АВ+ВС) = 2* (х+х+5)=2*(2х+5)
За умовою Р=22см, тому складаємо рівняння:
2*(2х+5)=22
2х+5=11
2х=6
х=3
За властивістю паралелограма:
АВ = CD = х = 3 см
ВС = AD = х+5 =3+5 = 8 см
#SPJ1