Проведена окружность, которая высекает на ab, bc, ac треугольника abc равные отрезки kl, mn, pq. причем точки k, m, p лежат внутри отрезков al, bn, cq соответственно. при этом оказалось, что отрезки lm и np касаются вписанной окружности треугольника abc.
а) доказать, что ab=ac
б) найти: радиус окружности, проходящей через точки k, l, m, n p, q, если угол а равен 84 градусов, qk=1.
75 см
Объяснение:
Теорема: перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Согласно теореме о перпендикуляре, опущенном из вершины прямого угла на гипотенузу, составим пропорцию и найдём АВ:
АВ : АС = АС : АD
Откуда (произведение средних равно произведению крайних):
АС² = АВ · АD
АВ = АС² : AD
АВ = 15² : 3 = 225 : 3 = 75 см
ответ: АВ = 75 см
Дано:
ABC - равнобедренный треугольник
AC - Основание треугольника = AB - 3 или BC - 3
P = 15.6 см - Периметр треугольника
Так как треугольник равнобедренный, его боковые стороны равны.
AB = BC
Пусть x - любая боковая сторона треугольника
Так как нам известно, что основание треугольника на 3 раза меньше, мы можем написать уравнение.
P = x + x +(x-3) - Периметр - Сумма длин всех сторон(Боковая сторона+ Боковая сторона + Основание)
15.6=x+x+(x-3)
15.6=3x-3
18.6 = 3x
x = 6.2 - Боковая сторона
Основание = 6.2 - 3 = 3.2
Проверка:
3.2+6.2 +6.2 = 15.6 см
ответ: 6.2, 6.2, 3.2 см