Проведіть пряму а. Позначте дві точки, що належать цій прямій, і дві точки, які їй не належать. Назвіть точки та запи. шіть взаємне розташування прямої і точок, використовуючи символи є і ¢.
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
Треугольник ВКС
<ВКС=90 градусов
<С=45 градусов
<КВС=180-(90+45)=45 градусов
Треугольник прямоугольный равнобедренный
ВК=КС=3 см
Т к по условию задачи
DK=KC. то
DC=3•2=6 cм
<D=<B=(360-45•2):2=270:2=135 градусов
Треугольник ВDK равен треугольнику ВКС по первому признаку равенства прямоугольных треугольников-по двум катетам,поэтому
DB=BC,а
<ВDC=<C=45 градусов
<DBC=180-45•2=90 градусов
<АВD=<В-<DBC=135-90=45 градусов
<ADB=180-45•2=90 градусов
А можно было найти угол DBC,aон равен 90 градусов,и утверждать,что
<АDB=<DBC=90 градусов,как внутренние накрест лежащие углы при
АВ || DC при секущей DB
Объяснение:
3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).