Если ∠С = 40°, то ∠С = ∠A. Из этого следует, что △ABC - равнобедренный (BA = BC), что и требовалось доказать.
б) Решение:
Выше мы уже доказали, что △ABC - равнобедренный (BA = BC).
В равнобедренном треугольнике высота, проведённая из вершины угла, противоположного основанию (в данном случае из ∠B), является также его биссектрисой.
Биссектриса делит угол пополам. Отсюда ∠ABH = ∠CBH. А если ∠B = 100°, то ∠ABH = ∠CBH = 100° / 2 = 50°.
Пусть один угол параллелограмма равен x, тогда второй угол равен 4x. Сумма острого и тупого углов в параллелограмме равна 180°. Составим и решим уравнение: x + 4x = 180 5x = 180 x = 36° - острый угол 180 - 36 = 144°- тупой угол ответ : 36°,36°,144°,144° 2) Обозначим меньшую сторону через x, тогда большая сторона x + 12. Периметр- это сумма длин всех сторон. Составим и решим уравнение: 2 * (x + x + 12) = 92 2 * (2x + 12) = 92 2x + 12 = 46 2x = 34 x = 17 см - меньшая сторона 17 + 12 = 29 см - большая сторона ответ: 17 см,17 см,29 см,29 см
а) Доказательство:
По теореме о сумме углов в треугольнике:
∠С = 180° - ∠A - ∠B = 180° - 40° - 100° = 40°.
Если ∠С = 40°, то ∠С = ∠A. Из этого следует, что △ABC - равнобедренный (BA = BC), что и требовалось доказать.
б) Решение:
Выше мы уже доказали, что △ABC - равнобедренный (BA = BC).
В равнобедренном треугольнике высота, проведённая из вершины угла, противоположного основанию (в данном случае из ∠B), является также его биссектрисой.
Биссектриса делит угол пополам. Отсюда ∠ABH = ∠CBH. А если ∠B = 100°, то ∠ABH = ∠CBH = 100° / 2 = 50°.
ответ: 50°.
x + 4x = 180
5x = 180
x = 36° - острый угол
180 - 36 = 144°- тупой угол
ответ : 36°,36°,144°,144°
2) Обозначим меньшую сторону через x, тогда большая сторона x + 12.
Периметр- это сумма длин всех сторон. Составим и решим уравнение:
2 * (x + x + 12) = 92
2 * (2x + 12) = 92
2x + 12 = 46
2x = 34
x = 17 см - меньшая сторона
17 + 12 = 29 см - большая сторона
ответ: 17 см,17 см,29 см,29 см