Продовження бічних сторін AB і CD трапеції ABCD перетинаються в точці K, AK = 24 см, AB =16 см, BC =18 см — менша основа. Знайдіть довжину більшої основи AD.
Пусть есть три некомпланарных вектора a b c, являющиеся "боковыми" ребрами тетраэдра из условия задачи (в том смысле, что все три имеют общее начало в вершине).
Попарные векторные произведения этих векторов дают векторы, перпендикулярные граням. Поскольку все грани равны, то эти векторные произведения имеют одинаковую абсолютную величину - удвоенную площадь грани. Приняв эту удвоенную площадь грани за единицу измерения площади (это никак не ограничивает общность), можно считать нормальные вектора cxb = n₁; bxa = n₂; axc = n₃; единичными векторами.
Я выбрал порядок в произведениях векторов так, чтобы они "торчали" наружу пирамиды. Уже сейчас стоит обратить внимание, что в этом случае двугранные углы при ребрах составляют 180° в сумме с углами между так выбранными нормалями. Поэтому косинусы углов будут равны по величине, но противоположного знака.
Осталась еще четвертая грань. её ребрам соответствуют вектора a₁ = b - c; b₁ = c - a ; c₁ = a - b; причем длины векторов a₁ = a; b₁ = b; c₁ = c; так как четвертая грань равна трем "боковым". Если теперь построить нормальный вектор аналогично трем предыдущим (то есть так, чтобы он смотрел наружу тетраэдра), то
или n₁ + n₂ + n₃ + n₄ = 0; (что само по себе - абсолютно замечательный результат).
пусть Σ = n₁n₂ + n₁n₃ + n₁n₄ + n₂n₃ + n₂n₄ + n₃n₄; сумма всех скалярных произведений между нормалями. Для того, чтобы доказать утверждение в задаче, нужно показать, что Σ = - 2; (каждое из произведений равно "минус косинус" угла при ребре между парами граней, заданных нормалями; я напомню, что все нормальные вектора - единичные, то есть равны 1 по модулю)
Я слегка переписываю это выражение Σ = n₁n₂ + n₁n₃ + n₂n₃ + (n₁ + n₂ + n₃)n₄ = n₁n₂ + n₁n₃ + n₂n₃ - n₄n₄ = n₁n₂ + n₁n₃ + n₂n₃ - 1;
Однако все грани тетраэдра равноценны, и аналогично можно записать
Точки A и B имеют координаты (1,5) и (4,4) соответственно.
Находим разность координат точек В и А по осям:
Δх = 4 - 1 = 3, Δу = 4 - 5 = -1. к(АВ) = -1/3.
Для перпендикулярных сторон АД и ВС квадрата угловые коэффициенты к = -1/(к(АВ).
Значит, для точки С по отношению к точке В Δх = - 1 , Δу = -3.
Координаты точки С: х = 4 - 1 = 3, у = 4 - 3 = 1.
Аналогично для точки Д по отношению к точке А Δх = - 1 , Δу = -3.
Координаты точки Д: х = 1 - 1 = 0, у = 5 - 3 = 2.
Длина АВ = √((Δх)² + (Δу)²) = √(9 + 1) =√10.
Площадь квадрата S = AB² = 10 кв.ед.
Жирным шрифтом обозначены вектора, скалярные величины обозначены обычными шрифтом.
Пусть есть три некомпланарных вектора a b c, являющиеся "боковыми" ребрами тетраэдра из условия задачи (в том смысле, что все три имеют общее начало в вершине).
Попарные векторные произведения этих векторов дают векторы, перпендикулярные граням. Поскольку все грани равны, то эти векторные произведения имеют одинаковую абсолютную величину - удвоенную площадь грани. Приняв эту удвоенную площадь грани за единицу измерения площади (это никак не ограничивает общность), можно считать нормальные вектора cxb = n₁; bxa = n₂; axc = n₃; единичными векторами.
Я выбрал порядок в произведениях векторов так, чтобы они "торчали" наружу пирамиды. Уже сейчас стоит обратить внимание, что в этом случае двугранные углы при ребрах составляют 180° в сумме с углами между так выбранными нормалями. Поэтому косинусы углов будут равны по величине, но противоположного знака.
Осталась еще четвертая грань. её ребрам соответствуют вектора a₁ = b - c; b₁ = c - a ; c₁ = a - b; причем длины векторов a₁ = a; b₁ = b; c₁ = c; так как четвертая грань равна трем "боковым". Если теперь построить нормальный вектор аналогично трем предыдущим (то есть так, чтобы он смотрел наружу тетраэдра), то
n₄ = - (с - a)x(b - c) = - bxa - cxb - axc = -(n₁ + n₂ + n₃);
или n₁ + n₂ + n₃ + n₄ = 0; (что само по себе - абсолютно замечательный результат).
пусть Σ = n₁n₂ + n₁n₃ + n₁n₄ + n₂n₃ + n₂n₄ + n₃n₄; сумма всех скалярных произведений между нормалями. Для того, чтобы доказать утверждение в задаче, нужно показать, что Σ = - 2; (каждое из произведений равно "минус косинус" угла при ребре между парами граней, заданных нормалями; я напомню, что все нормальные вектора - единичные, то есть равны 1 по модулю)
Я слегка переписываю это выражение Σ = n₁n₂ + n₁n₃ + n₂n₃ + (n₁ + n₂ + n₃)n₄ = n₁n₂ + n₁n₃ + n₂n₃ - n₄n₄ = n₁n₂ + n₁n₃ + n₂n₃ - 1;
Однако все грани тетраэдра равноценны, и аналогично можно записать
Σ = n₂n₃ + n₂n₄ + n₃n₄ - 1;
Σ = n₃n₄ + n₃n₁ + n₄n₁ - 1;
Σ = n₁n₂ + n₁n₄ + n₂n₄ - 1;
Если сложить все четыре равенства, то получится
4Σ = 2(n₁n₂ + n₁n₃ + n₁n₄ + n₂n₃ + n₂n₄ + n₃n₄) - 4;
4Σ = 2Σ - 4; Σ = -2 чтд. :)