Продовження бічних сторін AB і CD трапеції ABCD перетинаються в точці К. Менша основа ВС трапеції дорівнює 4 см, КВ=5 см, АB=7 см. Знайдіть більшу основу трапеції.
Теорема 30-градусного угла прямоугольного треугольника такова: сторона, противолежащая 30-и градусам в прямоугольном треугольнике — равен половине гипотенузы, тоесть: HB = 4 => BC = 4*2 = 8.
<B = 60° => <A = 90-60 = 30°.
По той же теореме следует это: BC = 8 => AB = 8*2 = 16.
HB = 4 => AH = 16-4 = 12.
Вывод: AH = 12.
4.
<OAB & <CDO — пара накрест лежащих углов, так ка прямые параллельны, то накрест лежащие углы друг другу равны, тоесть: <CDO = 47°.
<AOB = 90° => <COD = 90° (так как вертикальные углы).
<COD = 90°; <CDO = 47° => <DCO = 90-47 = 43°.
Вывод: <CDO = 47°; <DCO = 43°; <COD = 90°.
5.
Тема: Равенство треугольников.
По какому-то там признаку (не помню номер) — если 3 угла из каждого треугольника равны, то треугольники также друг другу равны.
Определим же эти углы: Так как прямыеу паралелльны, то накрест лежащие углы равны, тоесть: <ODB == <ACO. Нашл первую пару равных углов!
Вторая пара накрест лежащих друг другу равных углов: <CAO; <OBD.
Вторую пару то определили.
Так как <AOC = 90°, то его вертикальный угол — <DOB — также равен 90 градусам.
Доказали, что в двух треугольниках имеется 3 определения углов, что и означает, что треугольники равны.
И так как треугольники равны, то OB == AO; DO == OC.
Так как треугольники имеют 2 общей стороны, то против вертикальных прямых углов — лежат другу другу равные стороны — DB; AC.
6.
<A = 60° => <C = 30°.
По теореме 30-грдусного угла — катет AB — равен половине гипотенузы AC.
BM — медиана, потому что делит гипотенуз пополам, и также медиана прямоугольного треугольника, проведёнаня к гипотенузе — равна её половине, тоесть: BM == MC == AM = AC/2 = 5 => AC = 5*2 = 10.
2. М = 58, Т - 32
8. 19
14.
20. В = 65, А - 25
26. А = 24, С = 66
Объяснение:
2. Сначала находим часть угла К = 90 - 32 = 58. Затем в нижнем треугольнике: 180 - 90 - 58 = 32. Затем верхний угол: 180 - 90 - 32 = 58
8. Косинус 60 градусов (отношение прилежащего катета к гипотенузе): 1/2. Значит, 1/2 = х/38⇒ х = 19
14. Нет вопроса. Непонятно, что надо найти.
20. На рисунке показано, что отрезок СС1 делит угол пополам, значит, каждый из них равен 90/2=45. Угол В = 180 - 70 - 45 = 65. Угол А = 180 - 65 - 90 = 25
26. Плохо видно рисунок. Примем отрезок ВК за биссектрису. 21 - градусная мера угла между биссектрисой и высотой. Определим углы, которые образует биссектриса на стороне АС. Угол KLB = 90, угол LBK = 21, значит угол BKL = 180 - 21 -90 = 69, а угол BKA = 180 - 69 = 111.
Отсюда угол А = 180 - 45 - 111 = 24, а угол С = 180 - 24 -90 = 66
3.
<B = 60° => <HCB = 90-60 = 30° .
Теорема 30-градусного угла прямоугольного треугольника такова: сторона, противолежащая 30-и градусам в прямоугольном треугольнике — равен половине гипотенузы, тоесть: HB = 4 => BC = 4*2 = 8.
<B = 60° => <A = 90-60 = 30°.
По той же теореме следует это: BC = 8 => AB = 8*2 = 16.
HB = 4 => AH = 16-4 = 12.
Вывод: AH = 12.
4.
<OAB & <CDO — пара накрест лежащих углов, так ка прямые параллельны, то накрест лежащие углы друг другу равны, тоесть: <CDO = 47°.
<AOB = 90° => <COD = 90° (так как вертикальные углы).
<COD = 90°; <CDO = 47° => <DCO = 90-47 = 43°.
Вывод: <CDO = 47°; <DCO = 43°; <COD = 90°.
5.
Тема: Равенство треугольников.
По какому-то там признаку (не помню номер) — если 3 угла из каждого треугольника равны, то треугольники также друг другу равны.
Определим же эти углы: Так как прямыеу паралелльны, то накрест лежащие углы равны, тоесть: <ODB == <ACO. Нашл первую пару равных углов!
Вторая пара накрест лежащих друг другу равных углов: <CAO; <OBD.
Вторую пару то определили.
Так как <AOC = 90°, то его вертикальный угол — <DOB — также равен 90 градусам.
Доказали, что в двух треугольниках имеется 3 определения углов, что и означает, что треугольники равны.
И так как треугольники равны, то OB == AO; DO == OC.
Так как треугольники имеют 2 общей стороны, то против вертикальных прямых углов — лежат другу другу равные стороны — DB; AC.
6.
<A = 60° => <C = 30°.
По теореме 30-грдусного угла — катет AB — равен половине гипотенузы AC.
BM — медиана, потому что делит гипотенуз пополам, и также медиана прямоугольного треугольника, проведёнаня к гипотенузе — равна её половине, тоесть: BM == MC == AM = AC/2 = 5 => AC = 5*2 = 10.
BM == MC => <MBE == <MCE = 30° (<C = 30°).
<EMC = 90°; <C = 30° => <ME = MC/2 = 5/2 = 2.5.
Вывод: ME = 2.5.