Поскольку радиусы АО и ВО вписанной окружности перпендикулярны сторона угла, то можно рассматривать два треугольника равных по гипотенузе и двум катетам, равным радиусу вписанной окружности. ∆САО = ∆СВО <АСО = <ВСО= 84:2 = 42 градус Тогда <АОС = <ВОС = 90-42 = 48 градусов. Следовательно <АОВ = <АОС + <ВОС = 48+48 = 96 градусов.
Или сумма углов в четырехугольнике равна 360 градусов. В четырехугольнике САОВ: <С = 84 градуса <САО = <СВО = 90 градусов Следовательно: <АОВ = 360 - 2•90 - 84 = 360-189-84=96 градусов
Объяснение:
прямоугольник ABCD
CD =
AD = 0,7
Найти:
BD — ?
https://tex.z-dn.net/?f=c%5E2%20%3D%20a%5E2%20%2B%20b%5E2%20%5C%5C%5C%5Cc%5E2%20%3D%20(%5Csqrt%7B0%2C95%7D)%5E2%20%2B%200%2C7%5E2%5C%5Cc%5E2%20%3D%200%2C95%20%2B%200%2C49%5C%5C%20c%5E2%20%3D%201%2C44%5C%5Cc%20%3D%20%5Csqrt%7B1%2C44%7D%5C%5Cc%20%3D%201%2C2
Так как ABCD — прямоугольник, то AB = CD = , AD = BC = 0,7.
BD — гипотенуза прямоугольного треугольника ABD, поэтому найдём её через формулу теоремы Пифагора.
По теореме Пифагора получаем:
Значит, BD = 1,2
∆САО = ∆СВО
<АСО = <ВСО= 84:2 = 42 градус
Тогда <АОС = <ВОС = 90-42 = 48 градусов.
Следовательно <АОВ = <АОС + <ВОС = 48+48 = 96 градусов.
Или сумма углов в четырехугольнике равна 360 градусов.
В четырехугольнике САОВ:
<С = 84 градуса
<САО = <СВО = 90 градусов
Следовательно:
<АОВ = 360 - 2•90 - 84 = 360-189-84=96 градусов