Дано: ABCD-прямоугольная трапеция, ∠А=∠В=90°, ∠ВСА=∠АСD, ВС=9 см, АD=17 см, СА-диагональ трапеции Найти: S трапеции Решение: Проведём DK║АС. АСКD-параллелограмм (АС║DК, СК║АD). АD=СК=17 см. ∠ВСА=∠СКD как соответсвенные при АС║КD и секущей СК. Значит, ∠ВСА=∠СКD=∠АСD=∠САD. Рассмотрим ΔАСD. ∠САD=∠АСD. ΔАСD-равнобедренный. AD=CD=17 см. Проведём из вершины С высоту СМ. АМ=9 см, МD=8 cм. ΔМСD-прямоугольный. По теореме Пифагора для ΔМСD: СМ^2=CD^2-MD^2 CM^2=289-64 CM^2=225 CM=15 см=AB S трапеции=((BC+AD)*CM)\2=195 СМ^2 ответ: 195 см^2.
На рисунке во вложении показан треугольник АВС, разделённый на равные части по стороне АВ и получившаяся при этом разделении трапеция OKMN. ВD - высота треугольника АВС, которая разделена на три равных отрезка ВТ=ТЕ=ЕD обозначим их h, т.е. BD=BT+TE+ED=3h. Площадь треугольника АВС:
Площадь трапеции OKMN:
Площадь трапеции OKMN можно найти если вычесть из площади треугольника АВС площадь треугольника KBM и площадь трапеции AONC, которые вычисляются по формулам
Подставляем найденное значение АС в формулу площади треугольника АВС
Найти: S трапеции
Решение:
Проведём DK║АС. АСКD-параллелограмм (АС║DК, СК║АD). АD=СК=17 см. ∠ВСА=∠СКD как соответсвенные при АС║КD и секущей СК. Значит, ∠ВСА=∠СКD=∠АСD=∠САD.
Рассмотрим ΔАСD. ∠САD=∠АСD. ΔАСD-равнобедренный. AD=CD=17 см.
Проведём из вершины С высоту СМ. АМ=9 см, МD=8 cм.
ΔМСD-прямоугольный. По теореме Пифагора для ΔМСD:
СМ^2=CD^2-MD^2
CM^2=289-64
CM^2=225
CM=15 см=AB
S трапеции=((BC+AD)*CM)\2=195 СМ^2
ответ: 195 см^2.
Площадь треугольника АВС:
Площадь трапеции OKMN:
Площадь трапеции OKMN можно найти если вычесть из площади треугольника АВС площадь треугольника KBM и площадь трапеции AONC, которые вычисляются по формулам
Подставляем найденное значение АС в формулу площади треугольника АВС
ответ: площадь трапеции равна 31