Sabcd=a*h ( Площадь паралелограмма равна произведению его основания на высоту) Если BF и CM - перпендикуляры к прямой AD, то треугольник ABF=треугольнику DCE (так как AB=DC и проекция AF=DM). Поэтому площади этих треугольников равны. Площадь паралеллограмма ABCD равна сумме двух фигур: треугольника ABF (равного треугольникуDCM) и трапеции FBCD. Значит, если от площади ABCD вычесть площадь треугольника ABF, получим площадь трапеции FBCD. Тогда площадь параллелограмма ABCD равна площади прямоугольника FBCM. А стороны этого прямоугольника равны BC=AD=а и BF=h. S ABCD = AD•BF=a•h.
Пусть углы при осн.равны-х ,тогда тупой угол равен 4х ,медиана в равноб.треуг так же явл высотой и биссектрисой ,получается ,что треуг (который получается при делении большего высотой ,т.есть любой из них, они оба равны ) прямоуг. высота перпен.осн. значит один из углов равен 90град. следовательно на остальные 2 так же приходится 90 град .значит х+2х =90 ,тогда х=30 гдад. теперь по свойству .катеп (т.есть (медиана =а) лежащий против угла в 30 град равен половине гипотинузы (боковой стороны треуг ) значит боковая сторона=2а
Если BF и CM - перпендикуляры к прямой AD, то треугольник ABF=треугольнику DCE
(так как AB=DC и проекция AF=DM). Поэтому площади этих треугольников равны. Площадь паралеллограмма ABCD равна сумме двух фигур: треугольника ABF (равного треугольникуDCM) и трапеции FBCD. Значит, если от площади ABCD вычесть площадь треугольника ABF, получим площадь трапеции FBCD. Тогда площадь параллелограмма ABCD равна площади прямоугольника FBCM. А стороны этого прямоугольника равны BC=AD=а и BF=h.
S ABCD = AD•BF=a•h.