библиотека материалов скачать материал целиком можно бесплатно по ссылке внизу страницы. муниципальное бюджетное общеобразовательное учреждение «шумячская средняя школа имени в.ф. алешина»рассмотрено утверждено на заседании шмо приказом по школе № от протокол № от руководитель шмо: директор школы:аттестационные материалы промежуточной аттестации 2015-2016 учебный год по для 7 классовчасть а 1. если угол аос = 75 °, угол вос = 105°, то эти углы : а) смежные б) вертикальные в) определить невозможно 2. определите вид треугольника, если сумма двух его углов равна третьему углу? а) остроугольный в) прямоугольный б) тупоугольный г) определить невозможно 3. точка с принадлежит отрезку ав. чему равна длина отрезка ав, если ас=3,6 см, вс=2,5 см а) 1,1 б) 7,2 в) 6,1 г) 5 4. известны стороны равнобедренного треугольника: 2 см и 5 см. чему равен его периметр? а) 9 б) 6 в) 12 г) 15 5. сумма двух односторонних углов, образованных при пересечении прямых m и n секущей k, равна 148°. определить взаимное расположение прямых m и n. а) пересекаются б) параллельны в) такая ситуация невозможна 6. в прямоугольном треугольнике один из острых углов равен 25°. чему равен второй острый угол? а) 65° б) 25° в) 155° г) 90° 7-8. углы треугольника относятся как 1: 1: 7. определите вид данного треугольника. по углам: по сторонам: а)остроугольный а). разносторонний б)прямоугольный б) равносторонний в)тупоугольный в).равнобедренный 9. треугольника, с такими сторонами не существует: а) 1; 2; 3; б) 5; 5; 6; в) 5; 4; 3; г) 20; 21; 22 10. выберите верное утверждение. а)через любую точку можно провести только одну прямую б) сумма смежных углов равна 1800 в) если при пересечении двух прямых третьей прямой соответственные углы составляют в сумме 1800, то эти две прямые параллельны г)через любые две точки проходит более одной прямой
SK, SM, SN - высоты (апофемы) боковых граней. SO - высота пирамиды.Прям. тр-ки SOK, SOM, SON - равны, т.к. SO - общий катет и углы равны по условию.Значит т. О - центр вписанной окр-ти для тр-ка АВС.Тр-к АВС - прямоугольный, т.к. для него справедлива теорема Пифагора:10² = 8² + 6²Тогда его площадь:S(ABC) = 6*8/2 = 24 cm²С другой стороны:S(ABC) = p*r, где р - полупериметр, а r - радиус вписанной окр-ти.р = (10+8+6)/2 = 12 см. r = 24/12 = 2 cm.Теперь, например, из тр-ка SOM находим апофему:SM = r/cos45 = r*√2 = 2√2 см.Теперь находим полную пов-ть пирамиды, сложив площади четырех тр-ов:Sполн = S(ABC) + S(SAB) + S(SAC) + S(SBC) = 24 + (10*2√2 + 8*2√2 + 6*2√2)/2 == 24(1+√2) cm²ответ: 24(1+√2) см².