Луч - прямая, ограниченная с одной стороны (имеет только начало) отрезок - прямая, ограниченная с двух сторон (имеет начало и конец) угол - фигура, образованная двумя лучами, исходящими из одной точки треугольник - выпуклая фигура, образованная тремя отрезками, соединяющие три точки, не лежащие на одной прямой перпендикуляр - луч, который образует с другим лучом угол в 90 градусов медиана - луч, который делит отрезок на два равных друг другу отрезка высота - перпендикуляр из определенного угла окружность - геометрическое место точек, удаленных от одной точки (центра окружности) на равное растояние св-ва равнобедренного треугольника - углы при основании равны, медиана является так же биссектрисой и высотой признаки параллельных прямых - если две прямые перпендикулярны одной и той же прямой, если при пересечении их третьей прямой, образуемые внутренние углы, лежащие накрест, будут равны признаки равенства треугольников - по двум сторонам и углу между ними, по трем сторонам, по стороне и двум прилежащим углам свойства прямоугольного треугольника - сумма острых углов равна 90 градусов, медиана к гипотенузе равна ее половине, катет против угла в 30 градусов равен половине гипотенузы, гипотенуза больше обоих катетов и меньше их суммы
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
отрезок - прямая, ограниченная с двух сторон (имеет начало и конец)
угол - фигура, образованная двумя лучами, исходящими из одной точки
треугольник - выпуклая фигура, образованная тремя отрезками, соединяющие три точки, не лежащие на одной прямой
перпендикуляр - луч, который образует с другим лучом угол в 90 градусов
медиана - луч, который делит отрезок на два равных друг другу отрезка
высота - перпендикуляр из определенного угла
окружность - геометрическое место точек, удаленных от одной точки (центра окружности) на равное растояние
св-ва равнобедренного треугольника - углы при основании равны, медиана является так же биссектрисой и высотой
признаки параллельных прямых - если две прямые перпендикулярны одной и той же прямой, если при пересечении их третьей прямой, образуемые внутренние углы, лежащие накрест, будут равны
признаки равенства треугольников - по двум сторонам и углу между ними, по трем сторонам, по стороне и двум прилежащим углам
свойства прямоугольного треугольника - сумма острых углов равна 90 градусов, медиана к гипотенузе равна ее половине, катет против угла в 30 градусов равен половине гипотенузы, гипотенуза больше обоих катетов и меньше их суммы
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.