№2. Высота правильной четырехугольной пирамиды равна 12 см, а апофема – 15 см. Вычислить площадь боковой поверхности пирамиды.
Апофема – высота боковой грани правильной пирамиды, следовательно, QH⊥CD. По т. о 3-х перпендикулярах ОН⊥CD.
По т.Пифагора ОН=9 ( можно обойтись без вычислений, т.к. ∆ QOH- египетский, где отношение катет:гипотенуза=4:5).
ОН - половина АD, ⇒АD=2OH=18 (см)
Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания.
S=15•18•4:2=540 см².
————————
№3. Условие неполное.
Объем V правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC), на высоту h (OS)
Формула площади основания S=a²√3/2. Зная высоту, несложно вычислить объём данной пирамиды.
———————
№4.
Сторона основания правильной треугольной пирамиды равна 8 см, а боковая грань наклонена к плоскости основания под углом 30°. Найти площадь полной поверхности пирамиды.
S(бок)=3•MH•AB:2=3•8/3•8:2=32
————————
№5
Основание пирамиды – треугольник со сторонами 13 см, 14 см, 15 см. Найти площадь сечения, которое проходит параллельно плоскости основания и делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды.
————————
№6.
Найти объём правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а диагональное сечение является равносторонним треугольником.
пирамида КАВС, К-вершина, АВС равнобедренный треугольник АС=ВС, уголС=90, АВ=4*корень2, АС=ВС=корень(АВ в квадрате/2)=корень(32/2=4, проводим высоту СН на АВ, и КН на АВ. уголКНС=45, СН=высота=медиана =биссектриса=1/2АВ=4*корень2/2=2*корень2,
треугольник КСН прямоугольный, равнобедренный, уголСКН=90-уголКНС=90-45=45, СН=КС=2*корень2, треугольник КСВ=треугольник КАС как прямоугольные по двум катетам, КА=КВ=корень(ВС в квадрате+КС в квадрате)=корень(16+8)=2*корень6,
треугольник КНС прямоугольный, КН=корень(КС в квадрате+СН в квадрате)=корень(8+8)=4, площадь боковая =2*площадьКСВ +площадьАКВ =2*1/2*ВС*КС+1/2*АВ*КН=2*1/2*4*2*корень2+1/2*4*корень2*4=16*корень2
№1. Сторона правильной четырехугольной пирамиды равна а, а диагональное сечение - равносторонний треугольник. Найти объем пирамиды.
Пирамида QABCD, QO - высота, АQC- диагональное сечение, АВ=а.
V=S•h:3
S=a²
h=AC√3/2
AC=a:sin45°=a√2
h=a√6/2
V=a³√6/6
№2. Высота правильной четырехугольной пирамиды равна 12 см, а апофема – 15 см. Вычислить площадь боковой поверхности пирамиды.
Апофема – высота боковой грани правильной пирамиды, следовательно, QH⊥CD. По т. о 3-х перпендикулярах ОН⊥CD.
По т.Пифагора ОН=9 ( можно обойтись без вычислений, т.к. ∆ QOH- египетский, где отношение катет:гипотенуза=4:5).
ОН - половина АD, ⇒АD=2OH=18 (см)
Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания.
S=15•18•4:2=540 см².
————————
№3. Условие неполное.
Объем V правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC), на высоту h (OS)
Формула площади основания S=a²√3/2. Зная высоту, несложно вычислить объём данной пирамиды.
———————
№4.
Сторона основания правильной треугольной пирамиды равна 8 см, а боковая грань наклонена к плоскости основания под углом 30°. Найти площадь полной поверхности пирамиды.
S(бок)=3•MH•AB:2=3•8/3•8:2=32
————————
№5
Основание пирамиды – треугольник со сторонами 13 см, 14 см, 15 см. Найти площадь сечения, которое проходит параллельно плоскости основания и делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды.
————————
№6.
Найти объём правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а диагональное сечение является равносторонним треугольником.
———————
Решения задач 4,5,6 даны в приложениях.
Объяснение:
пирамида КАВС, К-вершина, АВС равнобедренный треугольник АС=ВС, уголС=90, АВ=4*корень2, АС=ВС=корень(АВ в квадрате/2)=корень(32/2=4, проводим высоту СН на АВ, и КН на АВ. уголКНС=45, СН=высота=медиана =биссектриса=1/2АВ=4*корень2/2=2*корень2,
треугольник КСН прямоугольный, равнобедренный, уголСКН=90-уголКНС=90-45=45, СН=КС=2*корень2, треугольник КСВ=треугольник КАС как прямоугольные по двум катетам, КА=КВ=корень(ВС в квадрате+КС в квадрате)=корень(16+8)=2*корень6,
треугольник КНС прямоугольный, КН=корень(КС в квадрате+СН в квадрате)=корень(8+8)=4, площадь боковая =2*площадьКСВ +площадьАКВ =2*1/2*ВС*КС+1/2*АВ*КН=2*1/2*4*2*корень2+1/2*4*корень2*4=16*корень2