Диагонали трапеции ABCD перпендикулярны и не равны - но для решения задачи это не важно. А важно то, что точки K, L, M и N - середины сторон трапеции ABCD
Диагональ МК четырехугольника KLMN- средняя линия трапеции ABCD. Средняя линия трапеции равна полусумме оснований. МК=(15+7):2=11см ---------------------------------------- Возможно, нужно найти диагональ LN, а не КМ. Тогда перпендикулярность диагоналей важна для решения задачи ( для чего-то она ведь дана ).
Стороны четырехугольника параллельны диагоналям и потому углы его - прямые (диагонали пересекаются под прямым углом). Черырехугольник KLMN - прямоугольник, и диагонали в нем равны. Поэтому LN=МК=11 см
ответ:
ам = кс по условию,
∠амр = ∠скр по условию,
∠мар = ∠кср как углы при основании равнобедренного треугольника, ⇒
δмар = δкср по стороне и двум прилежащим к ней углам, ⇒
мр = кр
из равенства треугольников так же следует, что ар = рс, значит, вр - медиана и высота δавс, т.е. вр⊥ас.
вм = ва - ма
вк = вс - кс, а т.к. ва = вс и ма = кс
вм = вк, δвкм равнобедренный.
тогда ∠вмк = ∠вкм = (180° - ∠в)/2,
но и ∠вас = ∠вса = (180° - ∠в)/2, значит,
∠вмк = ∠вас, а это соответственные углы при пересечении прямых ас и мк секущей ав, значит ас║мк.
вр⊥ас, ⇒ вр⊥мк
А важно то, что точки K, L, M и N - середины сторон трапеции ABCD
Диагональ МК четырехугольника KLMN- средняя линия трапеции ABCD.
Средняя линия трапеции равна полусумме оснований.
МК=(15+7):2=11см
----------------------------------------
Возможно, нужно найти диагональ LN, а не КМ.
Тогда перпендикулярность диагоналей важна для решения задачи ( для чего-то она ведь дана ).
Стороны четырехугольника параллельны диагоналям и потому углы его - прямые (диагонали пересекаются под прямым углом).
Черырехугольник KLMN - прямоугольник, и диагонали в нем равны.
Поэтому LN=МК=11 см