Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
Прямоугольный параллелепипед – это параллелепипед, все грани которого являются прямоугольниками. Другими словами, это прямая призма, основания которой – прямоугольники. (эти определения эквивалентны).
тогда :
1.
противоположные грани равны между собой;
2.
боковые ребра перпендикулярны основаниям, то есть являются высотами;
3.
как следствие, формула для объема принимает вид: V=abc, где a, b, c – три различных боковых ребра.
▸ Диагональ прямоугольного параллелепипеда – это отрезок, соединяющий две противоположные (не лежащие в одной грани) вершины. 1) Все диагонали равны, пересекаются в одной точке и делятся ею пополам; 2) Диагональ d можно найти по формуле: d2=a2+b2+c2.
Прямоугольный параллелепипед – это параллелепипед, все грани которого являются прямоугольниками. Другими словами, это прямая призма, основания которой – прямоугольники. (эти определения эквивалентны).
тогда :
1.противоположные грани равны между собой;
2.боковые ребра перпендикулярны основаниям, то есть являются высотами;
3.как следствие, формула для объема принимает вид: V=abc, где a, b, c – три различных боковых ребра.
▸ Диагональ прямоугольного параллелепипеда – это отрезок, соединяющий две противоположные (не лежащие в одной грани) вершины. 1) Все диагонали равны, пересекаются в одной точке и делятся ею пополам; 2) Диагональ d можно найти по формуле: d2=a2+b2+c2.