Правильная четырехугольная пирамида, со стороной основания равной . Ребро с основанием образует угол 30 градусов 1)найдите объём пирамиды 2)какой величины угол образуют сторона пирамиды с основанием
Треугольник АВМ образован двумя биссектрисами смежных углов и стороной АВ. Сумма смежных 180. Значит сумма половин 90. значит сумма двух острых углов 90,треугольник прямоугольный. с углами 60,30,90 Половина угла А равна 30 . Значит ВМ равно половине АВ. Катет против 30 градусов равен половине гипотенузы. Значит АВ = 24см=СК противоположные стороны паралелограмма. Периметр минус две стороны равен двум оставшимся. Значит 114-48=66см. Делим на 2 и получаем оставшиеся стороны по 33 см = ВС=АК.
ответ: АВ=СК=24см, ВС=АК=33 см
Объяснение:
Треугольник АВМ образован двумя биссектрисами смежных углов и стороной АВ. Сумма смежных 180. Значит сумма половин 90. значит сумма двух острых углов 90,треугольник прямоугольный. с углами 60,30,90 Половина угла А равна 30 . Значит ВМ равно половине АВ. Катет против 30 градусов равен половине гипотенузы. Значит АВ = 24см=СК противоположные стороны паралелограмма. Периметр минус две стороны равен двум оставшимся. Значит 114-48=66см. Делим на 2 и получаем оставшиеся стороны по 33 см = ВС=АК.
∠B=180° - ∠A=180° - 60°=120° (∠A и ∠B - внутренние односторонние
углы при параллельных прямых).
∠BTA=180°-(∠TAB+∠B)=180°-(30°+120°)=30° (сумма углов Δ)
ΔABT - равнобедренный.
АB=BT=6 cм
BC=BT+TC=6 +2=8 см
BC=AD=8 см (противоположные стороны)
BD²=AB²+AD²-2AB*ADcos60°=
=6²+8² -2*6*8*(1/2)=36+64-48=52
BD=√52=2√13 (см)
AC²=AB²+BC²-2AB*BCcos120°=
=6²+8²-2*6*8*cos(90°+30°)=
=36+64-96*(-sin30°)=100-96*(-1/2)=100+48=148
AC=√148=2√37 (см)
ответ: 2√13 см и 2√37 см.