Познакомьтесь с условными обозначениями элементов погоды в приложениях и запишите ими следующую характеристеку погоды: температура воздуха +20 °C ветер северо западный, туман дождь, облачность
Правильная 4-х угольная пирамида — это многогранник, у которого одна грань — основание пирамиды — квадрат, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.
S(полн)=S(осн)+S(бок), S(осн)=АВ² , S(бок)=1/2 Р(осн)*а, где а-апофема.
S(осн)=24² , S(осн)=576 дц².
Пусть МК⊥ВС, тогда ОК⊥ВС , по т. о 3-х перпендикулярах. ОК=12 дц.
ΔОМК-прямоугольный , по т. Пифагора МК²=ОК²+МО² , МК=20 дц.
S(бок)=1/2 *(4*24)*20=960(дц²).
S(полн)=576+960=1536 (дц²).
На швы и обрезки ещё дополнительно тратится 25% ⇒
(1536*25):100=384(дц²) тратиться на швы и обрезки.
Объяснение:
1)
Правильная 4-х угольная пирамида — это многогранник, у которого одна грань — основание пирамиды — квадрат, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.
S(полн)=S(осн)+S(бок), S(осн)=АВ² , S(бок)=1/2 Р(осн)*а, где а-апофема.
S(осн)=24² , S(осн)=576 дц².
Пусть МК⊥ВС, тогда ОК⊥ВС , по т. о 3-х перпендикулярах. ОК=12 дц.
ΔОМК-прямоугольный , по т. Пифагора МК²=ОК²+МО² , МК=20 дц.
S(бок)=1/2 *(4*24)*20=960(дц²).
S(полн)=576+960=1536 (дц²).
На швы и обрезки ещё дополнительно тратится 25% ⇒
(1536*25):100=384(дц²) тратиться на швы и обрезки.
1536+384=1920 (дц²)
60°
Объяснение:
Дано: ΔАВС.
АО - медиана, ВН - высота.
АО = ВН.
Найти: ∠ВМО
Продлим АО за точку О на ОК=АО. Из точки К опустим перпендикуляр на продожение АС.
1. Рассмотрим ΔВОК и ΔАОС.
ВО = ОС (условие)
АО = ОК (построение)
Вертикальные углы равны.⇒ ∠1 = ∠2
⇒ ΔВОК = ΔАОС (по двум сторонам и углу между ними. 1 признак)
В равных треугольниках против равных сторон лежат равные углы.⇒ ∠3 = ∠4 -накрест лежащие при ВК и АС и секущей ВС.
⇒ ВК || АС.
2. Рассмотрим НВКР.
ВК || АС (п.1)
Если две прямые перпендикулярны третьей, то они параллельны между собой.⇒ ВН || КР.
При этом ВН ⊥ АР и КР ⊥АР.
⇒ НВКР - прямоугольник.
Противоположные стороны прямоугольника равны.⇒ ВН = КР.
3. Рассмотрим ΔАКР - прямоугольный.
ВН = АО (условие)
ВН = КР (п.2)
⇒ КР = АО
АК = 2АО (построение) ⇒ АК = 2 КР
Катет, лежащий против угла в 30°, равен половине гипотенузы.⇒ ∠КАР = 30°
4. Рассмотрим ΔАМН - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°.⇒ ∠АМН = 90° - ∠КАР = 90° - 30° = 60°
∠АМН = ∠ВМО = 60°