Пусть a - основание, h - высота к основанию, b - боковая сторона, H - высота к ней. Поскольку ha = Hb = 2S; то H/2h = a/2b - это, очевидно, синус половины угла при вершине. Отсюда легко найти порядок построения. 1) проводятся две взаимно перпендикулярные прямые "1" и "2" , пересекающиеся в точке О. 2) вдоль прямой "1" от точки О откладывается h, это вершина А нужного треугольника. 3) параллельно этой прямой "1" НА РАССТОЯНИИ H от неё проводится еще одна прямая α; 4) рисуется окружность радиуса 2h с центром в точке А. Фиксируется точка пересечения этой окружности с прямой α - точка В1. 5) точка В1 соединяется с А, точка пересечения этой прямой с прямой "2" - вершина В нужного треугольника. Это всё.
Сечение конуса данной плоскостью имеет вид равнобедренного треугольника АSВ, высота которого SН = 6 см (дано) наклонена под углом 45° к плоскости основания конуса (дано). => Прямоугольный треугольник SОН равнобедренный и SО = ОН. По Пифагору: SH² = 2·SO² или 36 = 2·SO² => SО = ОН = 3√2 см.
По теореме о трех перпендикулярах ОН перпендикулярна АВ => АН=НВ по свойству перпендикуляра к хорде из центра окружности. Треугольник АВО равнобедренный и ОН - высота, медиана и биссектриса угла АОВ = 60° (дано) => ∠AОН = 30°. => АО = 2·АН. По Пифагору А0² = АH²+OН² или З·АH² = OН² => З·АН² = 18, АН = √6, АО = 2√6 см. АО = R (радиус основания конуса). Тогда объем конуса равен V = (1/3)·Sо•Н или
Поскольку ha = Hb = 2S; то H/2h = a/2b - это, очевидно, синус половины угла при вершине. Отсюда легко найти порядок построения.
1) проводятся две взаимно перпендикулярные прямые "1" и "2" , пересекающиеся в точке О.
2) вдоль прямой "1" от точки О откладывается h, это вершина А нужного треугольника.
3) параллельно этой прямой "1" НА РАССТОЯНИИ H от неё проводится еще одна прямая α;
4) рисуется окружность радиуса 2h с центром в точке А. Фиксируется точка пересечения этой окружности с прямой α - точка В1.
5) точка В1 соединяется с А, точка пересечения этой прямой с прямой "2" - вершина В нужного треугольника.
Это всё.
V = 24√2·π.
Объяснение:
Сечение конуса данной плоскостью имеет вид равнобедренного треугольника АSВ, высота которого SН = 6 см (дано) наклонена под углом 45° к плоскости основания конуса (дано). => Прямоугольный треугольник SОН равнобедренный и SО = ОН. По Пифагору: SH² = 2·SO² или 36 = 2·SO² => SО = ОН = 3√2 см.
По теореме о трех перпендикулярах ОН перпендикулярна АВ => АН=НВ по свойству перпендикуляра к хорде из центра окружности. Треугольник АВО равнобедренный и ОН - высота, медиана и биссектриса угла АОВ = 60° (дано) => ∠AОН = 30°. => АО = 2·АН. По Пифагору А0² = АH²+OН² или З·АH² = OН² => З·АН² = 18, АН = √6, АО = 2√6 см. АО = R (радиус основания конуса). Тогда объем конуса равен V = (1/3)·Sо•Н или
V = (1/3)·π·24·3√2 = 24√2·π.