Сходя из того, что по условию задачи любая апофема создаёт с высотой угол 45 градусов, то пирамида является правильной. Площадь боковой поверхности правильной пирамиды - S = 1/2 Pa, где P - периметр основания, a - апофема боковой грани. Апофема образует с высотой пирамиды и отрезком, проведенным из точки пересечения высоты и основания на сторону основания прямоугольный треугольник. Это следует из определения высоты пирамиды - она образует с плоскостью основания прямой угол.
Данный треугольник является равнобедренным, поскольку сумма углов треугольника равна 180 градусам, один из углов прямой, тогда 180 - 90 - 45 = 45. Поскольку оба угла равны - треугольник равнобедренный.
Таким образом, длина стороны основания равна удвоенной высоте пирамиды (треугольник равнобедренный, поэтому второй катет равен высоте пирамиды, а он же равен половине стороны, поскольку пирамида является правильной).
Исходя из того, что оба катета треугольника, образованного высотой пирамиды и отрезком, проведенным к боковой грани равны, то по теореме Пифагора апофема пирамиды равна
a = sqrt( 42 + 42 ) = sqrt( 32 ) = 4 sqrt( 2 ) , четыре корня из двух
Периметр равен 4 * 2 * 4 = 32 см, таким образом
S = 1/2 Pa = 1 / 2 * 32 * 4 sqrt( 2 ) = 64 sqrt( 2 ) , 64 корня из двух
я напишу через возведение в степень 1/3 опустим высоты на катеты df и dn тогда af и bn искомые проекции af=m bn=l тк уголы с,f,n прямые то и угол d-тоже прямой тогда fcnd-прямоугольник тогда fd=cn=a nd=cf=b по cвойству прямоугольника.Запишем теперь теорему высоту для прямоугольных треугольников сad и cbd df и dn в роли высот то есть верны равенства a^2=mb b^2=al надеюсь понятно. выразим b из 1 и подставим во 2 b=a^2/m (a^2/m)^2=al a^4/m^2=al сократив на a получим a^3=l*m^2 a=(l*m^2)^1/3 по тому же принципу находим b=(m*l^2)^1/3 тогда кавтеты ac=m+(m*l^2)^1/3 bc=l+(l*m^2)^1/3 и наконец по теореме пифагора ab=sqrt((m+(ml^2)^1/3)^2 +(l+(lm^2)^1/3)^2)
Данный треугольник является равнобедренным, поскольку сумма углов треугольника равна 180 градусам, один из углов прямой, тогда 180 - 90 - 45 = 45. Поскольку оба угла равны - треугольник равнобедренный.
Таким образом, длина стороны основания равна удвоенной высоте пирамиды (треугольник равнобедренный, поэтому второй катет равен высоте пирамиды, а он же равен половине стороны, поскольку пирамида является правильной).
Исходя из того, что оба катета треугольника, образованного высотой пирамиды и отрезком, проведенным к боковой грани равны, то по теореме Пифагора апофема пирамиды равна
a = sqrt( 42 + 42 ) = sqrt( 32 ) = 4 sqrt( 2 ) , четыре корня из двух
Периметр равен 4 * 2 * 4 = 32 см, таким образом
S = 1/2 Pa = 1 / 2 * 32 * 4 sqrt( 2 ) = 64 sqrt( 2 ) , 64 корня из двух
ответ: 64 корня из двух