Площадь круга находят по формуле S =πr² Радиус вписанного в треугольник круга можно найти по формуле r=S:p, где S- площадь треугольника, р- его полупериметр. р=(10+24+26):2=30Площадь треугольника найдем по формуле Герона:S=√{(p−a)(p−b)(p−c)}, где р- полупериметр треугольника, а, b и с - его стороны. S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120r=120:30=4 см S =16π см²Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника. Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности r=(a+b-c):2, где а, b - катеты, с - гипотенуза:r=(10+24-26):2=4 cм. Площадь круга, естественно. будет та же - 16π см²
Дана правильная треугольная пирамида со стороной основания 8 и высотой 10.
Высота основания h = a*cos30° = 8*√3/2 = 4√3.
Проекция апофемы на основание правильной треугольной пирамиды равна h/3 = 4√3/3.
Находим апофему А = √(Н² + (h/3)²) = √(100 + (48/9)) = √948/3 = 2√237/3.
Находим площадь боковой поверхности:
Sбок = (1/2)РА = (1/2)*(3*8)*(2√237/2) = 8√237 ≈ 123,1584 кв.ед.
Площадь основания So = a²√3/4 = 64√3/4 = 16√3 ≈ 27,71281 кв.ед.
Полная поверхность S = So + Sбок = 16√3 + 8√237 ≈ 150,8712 кв.ед.
Объём V = (1/3)SoH = (1/3)*16√3*10 = 160√3/3 ≈ 92,3760 куб.ед.
S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120r=120:30=4 см S =16π см²Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника. Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности r=(a+b-c):2, где а, b - катеты, с - гипотенуза:r=(10+24-26):2=4 cм. Площадь круга, естественно. будет та же - 16π см²