последовательность а1,а2,А3 ... начинается с А1=49, каждый следующий член равен квадрату, увеличенной на 1 суммы цифр предыдущего члена. Чему равно а2021?
Дано : параллелограмма MNKF ( MF | | NK , MN | | FK ) , MO =OK , O ∈[AB] , A ∈ [NK] ,B∈[MF] .
док. MAKB параллелограмма
Рассмотрим ΔMOB и ΔKOA : они равны по второму признаку равенства треугольников , действительно: ∠MOB=∠KOA(вертикальные углы) ; ∠OMB =∠OKA(накрест лежащие углы) ; MO =OK (по условию) . Из равенства этих треугольников следует, что MB = KA, но они и параллельны MB | | KA (лежат на параллельных прямых MF и NK) . Значит MAKB параллелограмма по второму признаку(если противоположные стороны четырехугольника равны и параллельны то четырехугольник параллелограмма) .
1. Одна сторона = х см, другая сторона = 2х см х+х+2х+2х=48 6х=48 х=8 8 см одна сторона 8*2=16 см другая сторона
2. Параллелограмм АBCD, биссектриса АК Угол ВАК = углу КАD, т.к. биссектриса АК делит угол ВАD пополам. Угол КAD = углу BKA, т.к. они накрест лежащие при AD параллельном ВС и секущей АК. Значит, угол ВАК = углу ВКА, т.к. все эти три угла равны между собой. Значит, треугольник АВК равнобедренный, т.к. углы при основании равны. Значит, АВ=ВК=7 см
док. MAKB параллелограмма
Рассмотрим ΔMOB и ΔKOA :
они равны по второму признаку равенства треугольников , действительно:
∠MOB=∠KOA(вертикальные углы) ;
∠OMB =∠OKA(накрест лежащие углы) ;
MO =OK (по условию) .
Из равенства этих треугольников следует, что MB = KA, но они и параллельны
MB | | KA (лежат на параллельных прямых MF и NK) .
Значит MAKB параллелограмма по второму признаку(если противоположные стороны четырехугольника равны и параллельны то четырехугольник параллелограмма) .
х+х+2х+2х=48
6х=48
х=8
8 см одна сторона
8*2=16 см другая сторона
2. Параллелограмм АBCD, биссектриса АК
Угол ВАК = углу КАD, т.к. биссектриса АК делит угол ВАD пополам.
Угол КAD = углу BKA, т.к. они накрест лежащие при AD параллельном ВС и секущей АК.
Значит, угол ВАК = углу ВКА, т.к. все эти три угла равны между собой.
Значит, треугольник АВК равнобедренный, т.к. углы при основании равны.
Значит, АВ=ВК=7 см
7+14=21 см другая сторона параллелограмма
7+7+21+21=56 см периметр параллелограмма.