ABCD - равнобедренная трапеция BC и AD - основания трапеции ВD=10м - диагональ BK - высота угол BDK=60 градусов
Рассмотрим треугольник BDK - он прямоугольный т.к. ВК перпендикулярно AD. sinBDK=BK/BD BK=sin60*BD=(корень из 3)/2*10=5 корней из 3 По теореме Пифагора: BD^2=BK^2+KD^2 KD^2=BD^2-BK^2 KD^2=100-75=25 KD=5 По свойствам равнобедренной трапеции (высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой - полуразности оснований)
KD=(BC+AD)/2=5 Тогда S=(BC+AD)/2*BK=5*5 корней из 3=25 корней из 3
5. 32см.
7.Смежные.
10. 90°.
Объяснение:
5. Раз точка D - середина отрезка АВ, то BD - половина отрезка АВ.
Раз точка С - середина отрезка BD, то ВС - половина отрезка BD.
Значит, ВС - четверть отрезка АВ, т.е. отрезок АВ в 4 раза больше отрезка ВС.
СВ= 8см, АВ=8*4=32см
7. Два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой, называются смежными.
Сумма смежных углов равна 180°.
10. ∠ABD - развернутый. Значит, ∠ABD=180°
∠ABY=∠YBC
∠CBX=∠XBD
∠ABD=∠ABY+∠YBC+∠CBX+∠XBD=2∠YBC+2∠CBX=2*(∠YBC+∠CBX)=180°
∠YBC+∠CBX=180/2=90°
∠XBY=∠XBC+∠CBY=90°
BC и AD - основания трапеции
ВD=10м - диагональ
BK - высота
угол BDK=60 градусов
Рассмотрим треугольник BDK - он прямоугольный т.к. ВК перпендикулярно AD. sinBDK=BK/BD
BK=sin60*BD=(корень из 3)/2*10=5 корней из 3
По теореме Пифагора: BD^2=BK^2+KD^2
KD^2=BD^2-BK^2
KD^2=100-75=25
KD=5
По свойствам равнобедренной трапеции (высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой - полуразности оснований)
KD=(BC+AD)/2=5
Тогда S=(BC+AD)/2*BK=5*5 корней из 3=25 корней из 3