2) Рассмотрим треугольник AOC - равнобедренный, т.к. AO=OB: в нём OB_1 является высотой (так как BB_1 - высота), значит, OB_1 - медиана, а значит, AB_1=B_1C Рассмотрим треугольник ABC: BB_1 - высота (по условию задачи) и медиана (так как AB_1=B_1C по доказанному), значит ABC - равнобедренный треугольник, и BB_1 - биссектриса угла В. Пусть расстояние от точки O до AB равно OM; OM = 1 по условию. Пусть расстояние от точки O до BC равно ON. Рассмотрим треугольники MOB и NOB -прямоугольные (<BMO=<BNO=90) OB - общая сторона <MBO=<NBO (т.к. BB_1 - биссектриса) Значит, треугольники MOB и NOB равны по гипотенузе и острому углу, значит OM=ON=1 ответ: 1
Пусть АМ = СМ = а, тогда АС = 2а. Если угол В = 45гр, то поскольку ΔАВС прямоугольный, то второй уострый угол его угол А = 45гр. Тогда ΔАВС равнобедренный и ВС = АС = 2а. Поскольку АМ = СМ, а ЕМ перпендикулярно АС, то ЕМ параллельно ВС и ЕМ - средняя линия ΔАВС и ЕМ = 0,5ВС = а В ΔАСД угол Д прямой, АС - гипотенуза, а угол АСД = 60гр. Следовательно угол САД = 30гр. А катет СД, лежащий против угла в 30 гр., равен половине гипотенузы АС, т.е. СД = АС : 2 = а Таким образом ЕМ = а и СД = а, т.е. ЕМ = СД, что и требовалось доказать.
2) Рассмотрим треугольник AOC - равнобедренный, т.к. AO=OB: в нём OB_1 является высотой (так как BB_1 - высота), значит, OB_1 - медиана, а значит, AB_1=B_1C
Рассмотрим треугольник ABC: BB_1 - высота (по условию задачи) и медиана (так как AB_1=B_1C по доказанному), значит ABC - равнобедренный треугольник, и BB_1 - биссектриса угла В.
Пусть расстояние от точки O до AB равно OM; OM = 1 по условию.
Пусть расстояние от точки O до BC равно ON.
Рассмотрим треугольники MOB и NOB -прямоугольные (<BMO=<BNO=90)
OB - общая сторона
<MBO=<NBO (т.к. BB_1 - биссектриса)
Значит, треугольники MOB и NOB равны по гипотенузе и острому углу, значит OM=ON=1
ответ: 1
Если угол В = 45гр, то поскольку ΔАВС прямоугольный, то второй уострый угол его угол А = 45гр. Тогда ΔАВС равнобедренный и ВС = АС = 2а.
Поскольку АМ = СМ, а ЕМ перпендикулярно АС, то ЕМ параллельно ВС и ЕМ - средняя линия ΔАВС и ЕМ = 0,5ВС = а
В ΔАСД угол Д прямой, АС - гипотенуза, а угол АСД = 60гр. Следовательно угол САД = 30гр. А катет СД, лежащий против угла в 30 гр., равен половине гипотенузы АС, т.е. СД = АС : 2 = а
Таким образом ЕМ = а и СД = а, т.е. ЕМ = СД, что и требовалось доказать.