Поле имеет форму прямоугольного треугольника АВС с катетами АС=120м и ВС=50м. Для посадки овощей его разбили на прямоугольный треугольник АКН и четырёхугольник НВСК, где (КН)┴(АВ), А-К-С. Будут ли площади этих многоугольников равны
1. , где n - градусная мера соответственного центрального угла. Найдем радиус окружности: , где S - площадь круга. Найдем длину дуги:
ответ: см. 2. Найдем сторону квадрата a:
Радиус вписанной в квадрат окружности равен: , где a - сторона квадрата.
Площадь вписанного треугольника равна: , где c - сторона правильного треугольника. Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
Найдем площадь правильного треугольника: . ответ: см.
Найдем радиус окружности:
, где S - площадь круга.
Найдем длину дуги:
ответ: см.
2. Найдем сторону квадрата a:
Радиус вписанной в квадрат окружности равен:
, где a - сторона квадрата.
Площадь вписанного треугольника равна:
, где c - сторона правильного треугольника.
Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
Найдем площадь правильного треугольника:
.
ответ: см.
Находим длины сторон по формуле расстояния между двумя точками.
Координаты векторов сторон
АВ (c) BC (a) AС (b)
x y x y x y
9 7 -6 2 3 9
Длины сторон АВ (с) = 81 49 √130 = 11,40175425
BC (а) = 36 4 √40 = 6,32455532
AC (b) = 9 81 √90 = 9,486832981
Периметр Р = 27,21314255.
Если периметр выражать в корнях, то надо их упростить.
√130 + √40 + √90 = √13*√10 + 2√10 + 3√10.
Далее можно в двух вариантах:
Р = √13*√10 + 5√10 или
√10 (√13 + 5).