Проведём построения и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и BOH, они прямоугольные, стороны AO и OB равны как радиусы окружностей, OH — общая, следовательно, треугольники AOH и HOB равны. Откуда AH=BH= дробь, числитель — AB, знаменатель — 2 =10. Аналогично, равны треугольники COK и KOD, откуда CK=KD. Рассмотрим треугольник BOH, найдём OB по теореме Пифагора:
OB= корень из { OH в степени 2 плюс BH в степени 2 }= корень из { 24 в степени 2 плюс 10 в степени 2 }=26.
Рассмотрим треугольник OKD, он прямоугольный, из теоремы Пифагора найдём KD:
KD= корень из { OD в степени 2 минус OK в степени 2 }= корень из { OB в степени 2 минус OK в степени 2 }= корень из { 26 в степени 2 минус 10 в степени 2 }=24.
BC:AC:AB=2:6:7 ВС=2х, АС=6х, АВ=7х
AB=BC+25 (см) Так как: АВ=ВС+25
7х = 2х+25
Найти: Р=? 5х = 25
х = 5
ВС=2х=10 (см), АС=6х=30(см), АВ=7х=35 (см)
Р = 10+30+35 = 75 (см)
ответ: 75 см
Проведём построения и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и BOH, они прямоугольные, стороны AO и OB равны как радиусы окружностей, OH — общая, следовательно, треугольники AOH и HOB равны. Откуда AH=BH= дробь, числитель — AB, знаменатель — 2 =10. Аналогично, равны треугольники COK и KOD, откуда CK=KD. Рассмотрим треугольник BOH, найдём OB по теореме Пифагора:
OB= корень из { OH в степени 2 плюс BH в степени 2 }= корень из { 24 в степени 2 плюс 10 в степени 2 }=26.
Рассмотрим треугольник OKD, он прямоугольный, из теоремы Пифагора найдём KD:
KD= корень из { OD в степени 2 минус OK в степени 2 }= корень из { OB в степени 2 минус OK в степени 2 }= корень из { 26 в степени 2 минус 10 в степени 2 }=24.
Таким образом, CD=2KD=2 умножить на 24=48.
ответ: 48.