Подскажите , надо намалюйте площину бета та пряму альфа,що їй належить.запишіть відповідне твердження за символів
2)точки а і в надежать площині альфа
виконайте малюнок та позначте на ньому точку с, яка належить площині альфа, але не належить прямій ав ,та точку к,яка не належить площині альфа
Объяснение:
1. АВ = АС и ВD = CD по условию
АD - общая сторона. Теугольники равны по 3- ему признаку равенства треугольников( если все три стороны треуг. равны, то равны и треуг.)
2. В равнобедренном треугольнике боковые стороны равны.
Пусть а - длина боковой стороны, в - основание. Тогда периметр равен:
Р = а +а +в = 2а +в.
Но, по условию а =в +2, подставляя значение а в уравнение, получаем:
Р = 2(в + 2) +в = 3в + 4, откуда
3в = Р - 4
в = (Р -4) /3 = ( 40-4) /3 = 36/3 =12 (см) - основание треугольника
а = в+2 = 12 +2 =14 см
3. В равнобедренном треугольнике углы при основании равны.
Т.е., угол ВАD = углу ВСЕ
АВ = ВС, т. к. Δ АВС - равнобедренный
АD= ЕС - по условию.
Δ АВD = Δ СВЕ по первому признаку равенства треугольников ( по 2-м сторонам и углу между ними)
Следователь но и угол АВD = углу СВЕ, ч.т.д.
4. ΔSBT = Δ SAT по 2-ому признаку равенства треугольников ( по стороне и двум углам, прилегающим к ней)
Углы равны по условию, а ST - общая сторона
Т.к. треугольники равны, то и SB = SA, тогда
ΔSBK = Δ SKA по 1-ому признаку равенства треуг. ( по 2-м сторонам и углу меду ними : SB =SA, SK - общая сторона, ∠BSK = ∠ASK). Следовательно, ВК = КА, ч.т.д.
5 Точку пересечения медианы См с прямой, проведенной из вершины А , обозначим буквой К.
1) Медиана делит сторону пополам, т.е., ВМ = МА =18 см : 2 = 9см
2) Рассмотрим Δ АМК и ΔАКС
МК = КС по условию,
АК -общая сторона
∠МКА = ∠АКС = 90 ̊
Δ АМК = ΔАКС по 2-м сторонам и углу между ними ( 1 признак равенства)
А значит АМ = АС =9см
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение: