1) Площадь параллелограмма равна полусумме его оснований —
2) Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета —
3) Площадь квадрата равна квадрату его высоты —
4) Высота трапеции равна её площади, делённой на среднюю линию —
Решение
1) "Площадь параллелограмма равна полусумме его оснований" — неправильно; площадь параллелограмма равна произведению одной из его сторон на высоту, проведённую к этой стороне.
2) "Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета" — в данном случае приведена формула вычисления одного из катетов; если принять один из катетов за основание, а второй за высоту, то, в частности, с этим утверждением можно было бы согласиться, но ведь кроме катетов в треугольнике есть ещё и гипотенуза, высота к которой проводится из вершины прямого угла, и в отношении высоты, проведенной к гипотенузе, такая формула неприменима; поэтому ответ - неправильно.
3) "Площадь квадрата равна квадрату его высоты" — площадь квадрата равна квадрату его стороны, а понятия "высоты квадрата" нет; ответ - неправильно.
4) "Высота трапеции равна её площади, делённой на среднюю линию" - да, так можно утверждать; если площадь трапеции равна произведению средней линии на высоту, то из этого следует, что делением площади на среднюю линию мы получаем высоту трапеции; ответ - правильно.
Проведем из вершины В треугольника АВС высоту ВН к основанию АС.
Так как, по условию, АВ = ВС, то треугольник АВС равнобедренный, а высота ВН в равнобедренном треугольника, так же является и медианой. Тогда АД = СД = АС / 2 = 12 / 2 = 6 см.
Рассмотрим прямоугольный треугольник АВД, и по теореме Пифагора определим длину катета ВН.
ВН2 = АВ2 – АД2 = 100 – 36 = 64.
ВН = 8 см.
Рассмотрим треугольный треугольник ДВН и по теореме Пифагора определим длину гипотенузы ДН.
ДН2 = ДВ2 + ВН2 = 152 + 82 = 225 + 64 = 289.
ДН = 17 см.
ответ: Расстояние от точки Д до прямой АС равно 17 см.
См. Объяснение
Объяснение:
Задание
Прочти высказывания и оцени их верность.
1) Площадь параллелограмма равна полусумме его оснований —
2) Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета —
3) Площадь квадрата равна квадрату его высоты —
4) Высота трапеции равна её площади, делённой на среднюю линию —
Решение
1) "Площадь параллелограмма равна полусумме его оснований" — неправильно; площадь параллелограмма равна произведению одной из его сторон на высоту, проведённую к этой стороне.
2) "Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета" — в данном случае приведена формула вычисления одного из катетов; если принять один из катетов за основание, а второй за высоту, то, в частности, с этим утверждением можно было бы согласиться, но ведь кроме катетов в треугольнике есть ещё и гипотенуза, высота к которой проводится из вершины прямого угла, и в отношении высоты, проведенной к гипотенузе, такая формула неприменима; поэтому ответ - неправильно.
3) "Площадь квадрата равна квадрату его высоты" — площадь квадрата равна квадрату его стороны, а понятия "высоты квадрата" нет; ответ - неправильно.
4) "Высота трапеции равна её площади, делённой на среднюю линию" - да, так можно утверждать; если площадь трапеции равна произведению средней линии на высоту, то из этого следует, что делением площади на среднюю линию мы получаем высоту трапеции; ответ - правильно.
Проведем из вершины В треугольника АВС высоту ВН к основанию АС.
Так как, по условию, АВ = ВС, то треугольник АВС равнобедренный, а высота ВН в равнобедренном треугольника, так же является и медианой. Тогда АД = СД = АС / 2 = 12 / 2 = 6 см.
Рассмотрим прямоугольный треугольник АВД, и по теореме Пифагора определим длину катета ВН.
ВН2 = АВ2 – АД2 = 100 – 36 = 64.
ВН = 8 см.
Рассмотрим треугольный треугольник ДВН и по теореме Пифагора определим длину гипотенузы ДН.
ДН2 = ДВ2 + ВН2 = 152 + 82 = 225 + 64 = 289.
ДН = 17 см.
ответ: Расстояние от точки Д до прямой АС равно 17 см.