Найдем другой угол параллелограмма зная, что сумма смежных (соседних) углов параллелограмма равна 180°:
180° -60° = 120°
Рассмотрим треугольники образованные боковыми сторонами и диагоналями.
Треугольник со сторонами 12 и 20 см и углом между ними 60°: третья сторона d1 будет диагональю параллелограмма.
Используем теорему косинусов ("Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними"):
Найдем другой угол параллелограмма зная, что сумма смежных (соседних) углов параллелограмма равна 180°:
180° -60° = 120°
Рассмотрим треугольники образованные боковыми сторонами и диагоналями.
Треугольник со сторонами 12 и 20 см и углом между ними 60°: третья сторона d1 будет диагональю параллелограмма.
Используем теорему косинусов ("Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними"):
d1 = √(12²+20²-2*12*20*cos60°) = √(144+400-480*0.5) = √304=√(16*19)=4√19
Треугольник со сторонами 12 и 20 см и углом между ними 120°: третья сторона d2 будет диагональю параллелограмма.
d2 = √(12²+20²-2*12*20*cos120°) = √(144+400+480*0.5) = √784 = 28
Объяснение:
Пусть А - точка, не принадлежащая плоскости α.
АВ = 15 см и АС = 17 см - наклонные, АН - перпендикуляр к плоскости α..
Тогда ВН и СН - проекции наклонных на плоскость.
Из двух наклонных, проведенных из одной точки, большую проекцию имеет большая наклонная.
Пусть ВН = х, СН = х + 4
ΔАВН и ΔАСН прямоугольные. По теореме Пифагора выразим из них АН:
АН² = АВ² - ВН² = 225 - х²
АН² = АС² - СН² = 289 - (х + 4)²
225 - х² = 289 - (х + 4)²
225 - x² = 289 - x² - 8x - 16
8x = 48
x = 6
ВН = 6 см
СН = 10 см
Объяснение:
надеюсь то)