В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
dina53646
dina53646
19.01.2022 02:05 •  Геометрия

По стороне основания а и боковому ребру b найдите полную поверхность правильной призмы: 1) треугольной; 2) четырехугольной

Показать ответ
Ответ:
slavaglybochka
slavaglybochka
02.11.2021 05:07
Проведем МК параллельно основанию трапеции, тогда это средняя линия трапеции. Также она делит сторону треугольника пополам, значит это медиана. Медиана треугольника делит его на 2 треуг. с одинаковыми площадями, значит площадь треугольника МСК=12 и площадь МКД=12. Что такое площадь? ЭТо половина произведения основания на высоту треугольника. к примеру основание МК и высота СН или основание МК и высота ДН1 для МСК и МКД соответственно. их площади равны 12, значит 12=0,5 МК*СН к примеру, 24=МК*СН. это площадь треугольника. а площадь трапеции равна произведению средней линии на высоту, т е МК-средняя линия, а СН половина высоты, значит 24 в выражении еще умножим на 2,т к в выражении лишь половина высоты, итого площадь трапеции =48
0,0(0 оценок)
Ответ:
vladpin01
vladpin01
12.10.2022 21:30
Дано:

Правильная четырёхугольная пирамида FABCD.

AB=6 (см).

FG=10 (см).

Найти:

S_{(n. \: no_Bepx.)}=? (см²).

Решение:

\boxed{S_{(n. \: no_Bepx.)}=S_{(oc_Ho_B.)}+S_{(6o_K. \: no_Bepx.)}}

Значит сначала мы должны найти площадь основания пирамиды, а затем площадь боковой поверхности пирамиды.

В основании правильной четырёхугольной пирамиды лежит квадрат, поэтому S_{(_k_B.)}=a^2=6^2=36 (см²).

Площадь боковой поверхности правильной четырёхугольной пирамиды - полупроизведение периметра основания на апофему.

Значит нам нужно сначала найти апофему нашей пирамиды.

1 правило: Апофема делит сторону основания пополам.2 правило: Катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.

Объяснение 1 правила: из этого следует, что апофема FH делит сторону основания DC так, что DH=HC=\dfrac{6}{2}=3 (см).

Объяснение 2 правила: внутри нашей пирамиды образовался прямоугольный \triangle FGH, где FG - катет прямоугольного тр-ка (высота пирамиды); GH - катет прямоугольного тр-ка; FH - гипотенуза прямоугольного тр-ка (апофема пирамиды). По данному правилу можно сказать, что DH=HC=GH=3 (см).

Так как апофема FH нашей пирамиды является ещё и гипотенузы прямоугольного \triangle FGH, то мы сможем найти её величину по т.Пифагора:

FH=\sqrt{FG^2+GH^2}=\sqrt{10^2+3^2}=\sqrt{100+9}=\sqrt{109} (см).

Теперь найдём периметр основания (квадрата):

P=4a=6\cdot4=24 (см).

Затем найдём площадь боковой поверхности:

S_{(6ok. \: no_B.)} =P_{(oc_Ho_B.)}\cdot\dfrac{1}{2}\cdot FH=24\cdot\dfrac{1}{2}\cdot\sqrt{109}=12\sqrt{109} (см²).

Остаётся найти ответ на вопрос: "Чему равна площадь полной поверхности пирамиды?"

S_{(n. \: no_Bepx.)}=\boxed{36+12\sqrt{109}} (см²).

ответ: \boxed{S_{(n. \: no_Bepx.)}=36+12\sqrt{109}} (см²).
Найти полную поверхность правильной четырехугольной пирамиды, сторона основания которой 6 см, а высо
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота