Проведем МК параллельно основанию трапеции, тогда это средняя линия трапеции. Также она делит сторону треугольника пополам, значит это медиана. Медиана треугольника делит его на 2 треуг. с одинаковыми площадями, значит площадь треугольника МСК=12 и площадь МКД=12. Что такое площадь? ЭТо половина произведения основания на высоту треугольника. к примеру основание МК и высота СН или основание МК и высота ДН1 для МСК и МКД соответственно. их площади равны 12, значит 12=0,5 МК*СН к примеру, 24=МК*СН. это площадь треугольника. а площадь трапеции равна произведению средней линии на высоту, т е МК-средняя линия, а СН половина высоты, значит 24 в выражении еще умножим на 2,т к в выражении лишь половина высоты, итого площадь трапеции =48
Значит сначала мы должны найти площадь основания пирамиды, а затем площадь боковой поверхности пирамиды.
В основании правильной четырёхугольной пирамиды лежит квадрат, поэтому (см²).
Площадь боковой поверхности правильной четырёхугольной пирамиды - полупроизведение периметра основания на апофему.
Значит нам нужно сначала найти апофему нашей пирамиды.
1 правило: Апофема делит сторону основания пополам.2 правило: Катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.
Объяснение 1 правила: из этого следует, что апофема делит сторону основания так, что (см).
Объяснение 2 правила: внутри нашей пирамиды образовался прямоугольный , где - катет прямоугольного тр-ка (высота пирамиды); - катет прямоугольного тр-ка; - гипотенуза прямоугольного тр-ка (апофема пирамиды). По данному правилу можно сказать, что (см).
Так как апофема нашей пирамиды является ещё и гипотенузы прямоугольного , то мы сможем найти её величину по т.Пифагора:
(см).
Теперь найдём периметр основания (квадрата):
(см).
Затем найдём площадь боковой поверхности:
(см²).
Остаётся найти ответ на вопрос: "Чему равна площадь полной поверхности пирамиды?"
Правильная четырёхугольная пирамида .
(см).
(см).
Найти:(см²).
Решение:Значит сначала мы должны найти площадь основания пирамиды, а затем площадь боковой поверхности пирамиды.
В основании правильной четырёхугольной пирамиды лежит квадрат, поэтому (см²).
Площадь боковой поверхности правильной четырёхугольной пирамиды - полупроизведение периметра основания на апофему.Значит нам нужно сначала найти апофему нашей пирамиды.
1 правило: Апофема делит сторону основания пополам.2 правило: Катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.Объяснение 1 правила: из этого следует, что апофема делит сторону основания так, что (см).
Объяснение 2 правила: внутри нашей пирамиды образовался прямоугольный , где - катет прямоугольного тр-ка (высота пирамиды); - катет прямоугольного тр-ка; - гипотенуза прямоугольного тр-ка (апофема пирамиды). По данному правилу можно сказать, что (см).
Так как апофема нашей пирамиды является ещё и гипотенузы прямоугольного , то мы сможем найти её величину по т.Пифагора:
(см).
Теперь найдём периметр основания (квадрата):
(см).
Затем найдём площадь боковой поверхности:
(см²).
Остаётся найти ответ на вопрос: "Чему равна площадь полной поверхности пирамиды?"
(см²).
ответ: (см²).