Найти периметр трапеции по готовому чертежу
Объяснение:
∠BCО = ∠ОЕА= 30° как накрест лежащие , при секущей СЕ.
По т. о внешнем угле треугольника в ΔЕАО , ∠ЕОА=60°-30°=30°. Откуда ∠AOE = ∠BOC = 30° ⇒ ∠ВОС=30°.
Значит ΔЕАО=ΔСВО по стороне и 2-м прилежащим углам:
ОА=ОВ по условию,
∠AOE = ∠BOC = 30° ,
∠ЕАО=∠СВО как накрест лежащие ,АВ-секущая.
В равных треугольниках соответственные элементы равны ⇒ЕА=ВС.
Пусть ЕА=ВС=а. Т.к. ΔЕАО , ΔСВО-равнобедренные , то ЕА=ОА=ВС=ОВ=а . Тогда сторона трапеции АВ=2а ⇒ СD=2а (*),
т.к АВСD-равнобедренная трапеция( ∠D=180°-120°=60°)
Из Δ ECD -прямоугольный , ЕD=ЕА+АD=а+15 найдем CD = ED = (**).
Приравняем полученные выражения (*) и (**) , получим
2а = , 4а=а+15 , а=5 ⇒ ВС=5, АВ=СD=10
P(ABCD) = 5 + 15 +2* 10 =40 .
ABCD - параллелограмм
\begin{gathered}\overrightarrow{AD} = \overrightarrow a \\ \\ \overrightarrow{AB} = \overrightarrow b \\ \\ K \in BC, ~L \in ADBK:KC=3:4, ~AL:LD=4:3\end{gathered}
AD
=
a
AB
b
K∈BC, L∈AD
BK:KC=3:4, AL:LD=4:3
Выразить вектор \overrightarrow {KL}
KL
через вектора \overrightarrow a, ~\overrightarrow b
,
\displaystyle \overrightarrow{KL} =\overrightarrow{KB} +\overrightarrow{BA}+ \overrightarrow {AL}
KB
+
BA
AL
(по правилу суммы нескольких векторов)
Рассмотрим параллелограмм ABCD
AD = BC по свойству параллелограмма
AD ║ BC - по определению параллелограмма
\Rightarrow \overrightarrow{BC} = \overrightarrow{AD} = \overrightarrow a⇒
BC
\begin{gathered}\displaystyle \overrightarrow {KB} = \frac{3}{7}\overrightarrow{CB} = -\frac{3}{7}\overrightarrow{BC} = -\frac{3}{7}\overrightarrow a \\ \\ \overrightarrow {BA} = -\overrightarrow {AB} = -\overrightarrow b \\ \\ \overrightarrow {AL} = \frac{4}{7}\overrightarrow{AD} = \frac{4}{7}\overrightarrow{a}\end{gathered}
7
3
CB
=−
4
\displaystyle \overrightarrow{KL} =\overrightarrow{KB} +\overrightarrow{BA}+ \overrightarrow {AL} = -\frac 3 7 \overrightarrow a - \overrightarrow b + \frac 4 7 \overrightarrow a = \frac 1 7 \overrightarrow a - \overrightarrow b
−
1
\displaystyle \text{Answer}: \boxed{\overrightarrow {KL} = \frac 1 7 \overrightarrow a - \overrightarrow b}Answer:
Найти периметр трапеции по готовому чертежу
Объяснение:
∠BCО = ∠ОЕА= 30° как накрест лежащие , при секущей СЕ.
По т. о внешнем угле треугольника в ΔЕАО , ∠ЕОА=60°-30°=30°. Откуда ∠AOE = ∠BOC = 30° ⇒ ∠ВОС=30°.
Значит ΔЕАО=ΔСВО по стороне и 2-м прилежащим углам:
ОА=ОВ по условию,
∠AOE = ∠BOC = 30° ,
∠ЕАО=∠СВО как накрест лежащие ,АВ-секущая.
В равных треугольниках соответственные элементы равны ⇒ЕА=ВС.
Пусть ЕА=ВС=а. Т.к. ΔЕАО , ΔСВО-равнобедренные , то ЕА=ОА=ВС=ОВ=а . Тогда сторона трапеции АВ=2а ⇒ СD=2а (*),
т.к АВСD-равнобедренная трапеция( ∠D=180°-120°=60°)
Из Δ ECD -прямоугольный , ЕD=ЕА+АD=а+15 найдем CD = ED = (**).
Приравняем полученные выражения (*) и (**) , получим
2а = , 4а=а+15 , а=5 ⇒ ВС=5, АВ=СD=10
P(ABCD) = 5 + 15 +2* 10 =40 .
ABCD - параллелограмм
\begin{gathered}\overrightarrow{AD} = \overrightarrow a \\ \\ \overrightarrow{AB} = \overrightarrow b \\ \\ K \in BC, ~L \in ADBK:KC=3:4, ~AL:LD=4:3\end{gathered}
AD
=
a
AB
=
b
K∈BC, L∈AD
BK:KC=3:4, AL:LD=4:3
Выразить вектор \overrightarrow {KL}
KL
через вектора \overrightarrow a, ~\overrightarrow b
a
,
b
\displaystyle \overrightarrow{KL} =\overrightarrow{KB} +\overrightarrow{BA}+ \overrightarrow {AL}
KL
=
KB
+
BA
+
AL
(по правилу суммы нескольких векторов)
Рассмотрим параллелограмм ABCD
AD = BC по свойству параллелограмма
AD ║ BC - по определению параллелограмма
\Rightarrow \overrightarrow{BC} = \overrightarrow{AD} = \overrightarrow a⇒
BC
=
AD
=
a
\begin{gathered}\displaystyle \overrightarrow {KB} = \frac{3}{7}\overrightarrow{CB} = -\frac{3}{7}\overrightarrow{BC} = -\frac{3}{7}\overrightarrow a \\ \\ \overrightarrow {BA} = -\overrightarrow {AB} = -\overrightarrow b \\ \\ \overrightarrow {AL} = \frac{4}{7}\overrightarrow{AD} = \frac{4}{7}\overrightarrow{a}\end{gathered}
KB
=
7
3
CB
=−
7
3
BC
=−
7
3
a
BA
=−
AB
=−
b
AL
=
7
4
AD
=
7
4
a
\displaystyle \overrightarrow{KL} =\overrightarrow{KB} +\overrightarrow{BA}+ \overrightarrow {AL} = -\frac 3 7 \overrightarrow a - \overrightarrow b + \frac 4 7 \overrightarrow a = \frac 1 7 \overrightarrow a - \overrightarrow b
KL
=
KB
+
BA
+
AL
=−
7
3
a
−
b
+
7
4
a
=
7
1
a
−
b
\displaystyle \text{Answer}: \boxed{\overrightarrow {KL} = \frac 1 7 \overrightarrow a - \overrightarrow b}Answer:
KL
=
7
1
a
−
b