Т.к. сечение проходит через диагональ под углом равным наклону бокового ребра, а диагонали в точке пересечения делятся пополам, то апофема в плоскости сечения (является биссектрисой медианой.и высотой, для ∆ в сечении) равна половине ребра, так как является средней линией ∆.
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
Объяснение:
Дано: SABCD-правильная пирамида
h=9,. SA=SB=SC=SD
Основание-прям-ик AxB=6х8
S(d)=?
Определяем диагональ основания
По т Пифагора d=√(A^2+B^2)
d = √(6^2+8^2)=`√36+64=√100=10
Т.к. сечение проходит через диагональ под углом равным наклону бокового ребра, а диагонали в точке пересечения делятся пополам, то апофема в плоскости сечения (является биссектрисой медианой.и высотой, для ∆ в сечении) равна половине ребра, так как является средней линией ∆.
Определяем L=√(h^2+(d/2)^2)= =√(81+25)=√106
Sсеч= 1/2*d*L/2=1/4*d*L
Sсеч= 1/4*10*√106=5/2√(26,5*4)
Sсеч=5√26,5
Рисунок нарисуешь самостоятельно...