Пусть дана треугольная пирамида SABC. По условию, угол ASB равен 90 градусов, то есть треугольник ASB прямоугольный. Так как пирамида правильная, AS=BS, треугольнык равнобедренный и его углы равны 45,45,90. В таком треугольнике катет SA в sqrt(2) меньше гипотенузы AB, AB=4sqrt(3), тогда SA=2sqrt(6). Пусть SO высота пирамиды, так как пирамида правильная, O - центр пирамиды. Высота AH проходит через O и является также медианой, а значит, делится точкой O в отношении 2:1, считая от вершины. Высота правильного треугольника равна a*sqrt(3)/2, где a - его сторона, в нашем случае AH=6, AO=2/3AH=4. Треугольник SAO прямоугольный, так как SO перпендикулярно (ABC) и перпендикулярно AO. В нем известны гипотенуза SA и катет AO. По теореме Пифагора найдем SO, SO=2sqrt(2)
Пусть дана треугольная пирамида SABC. По условию, угол ASB равен 90 градусов, то есть треугольник ASB прямоугольный. Так как пирамида правильная, AS=BS, треугольнык равнобедренный и его углы равны 45,45,90. В таком треугольнике катет SA в sqrt(2) меньше гипотенузы AB, AB=4sqrt(3), тогда SA=2sqrt(6). Пусть SO высота пирамиды, так как пирамида правильная, O - центр пирамиды. Высота AH проходит через O и является также медианой, а значит, делится точкой O в отношении 2:1, считая от вершины. Высота правильного треугольника равна a*sqrt(3)/2, где a - его сторона, в нашем случае AH=6, AO=2/3AH=4. Треугольник SAO прямоугольный, так как SO перпендикулярно (ABC) и перпендикулярно AO. В нем известны гипотенуза SA и катет AO. По теореме Пифагора найдем SO, SO=2sqrt(2)
1)построили треугольник АВС
2)проведем бессиктрисы АА1 и ВВ1, точка пересечения этих двух бессиктри О
3)найдем угол ОВА
известно, что угол В=30, следовательно угол ОВА=15, так как биссектриса делит угол попалам
4)Найдем угол ВАО
мы знаем, что угол О=107(по условию), следовательно угол ВАО=180-(15+107)=58
5)найдем угол А
биссектриса АА! делит угол А попалам, следовательно угол А=2*58
А=116
если один из уголов треугольника равен больше 90, то треугольник не являеться остроугольным
как то так)