1. Отрезок, для которого указано, какая из его граничных точек считается началом, а какая - концом, называется вектором. Нулевой вектор, проекция которого изображается в виде точки, так как его длинна равна нулю ( поэтому и можем изобразить только точкой) 5. Из точки можно построить только один равный вектор, так как они должны быть параллельны, одинаковой длины и направленности 6. Для любых векторов а, b, и с справедливы равенства: 1. a + b = b + a (переместительный закон) 2. (a + b) + c = a + (b + c) (сочетательный закон)
5. Из точки можно построить только один равный вектор, так как они должны быть параллельны, одинаковой длины и направленности
6. Для любых векторов а, b, и с справедливы равенства:
1. a + b = b + a (переместительный закон)
2. (a + b) + c = a + (b + c) (сочетательный закон)
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.