1) Обозначим один угол за х градусов, тогда второй угол будет (х+40) градусов. Так как сумма смежных углов = 180 градусов, то х+х+40=180 2х+40=180 2х=140 х=70 Один из углов равен 70 градусов, а второй на 40 больше него: 70+40=110 ответ:70, 110 2)Найдем синус угла D: sinD=EH/DE sinD=2/4=1/2 А синус 30 градусов и есть 1/2, следовательно угол D = 30 градусов. А второй острый угол =90-30=60градусов ответ:30, 60 3)Внешний угол треугольника равен сумме двух других углов, не смежных с ним, т.е. один из острых углов = 134-90 =44 градуса А второй угол = 90-44 = 46 градусов ответ:44, 46 Насчет 3 номера-что такое МС??
усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
х+х+40=180
2х+40=180
2х=140
х=70
Один из углов равен 70 градусов, а второй на 40 больше него:
70+40=110
ответ:70, 110
2)Найдем синус угла D:
sinD=EH/DE
sinD=2/4=1/2
А синус 30 градусов и есть 1/2, следовательно угол D = 30 градусов. А второй острый угол =90-30=60градусов
ответ:30, 60
3)Внешний угол треугольника равен сумме двух других углов, не смежных с ним, т.е. один из острых углов = 134-90 =44 градуса
А второй угол = 90-44 = 46 градусов
ответ:44, 46
Насчет 3 номера-что такое МС??
усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
1/x = 1/(2*(x-15)) + 1/180 (2)
2*(x-15)*180 = 180*x + 2*(x-15)*x
(x-15)*180 = 90*x + (x-15)*x
180*x – 15*180 = 90*x + x2 – 15*x
180*x – 15*180 = 90*x + x2 – 15*x
x2 + (90-15 – 180)*x +15*180 = 0
x2 — 105*x +15*180 = 0
решим полученное квадратное уравнение.
d = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =
= 152*(72 – 4*12) = 152*(49 – 48) = 152
следовательно, уравнение (2) имеет 2 корня:
x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45
так как x> 54, то x=60
ответ 60