Плоскости α и β перпендикулярны. Прямая ρ – линия их пересечения. В плоскости α выбрали точку М, а в плоскости β - точку N такие что расстояния от них до прямой ρ равны 6 см и 7 см соответственно. Найдите расстояние между основаниями перпендикуляров ,проведенных из точек М и N к прямой ρ,если расстояние между точками М и Ν равно 110 см.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
1) все углы по 60° так как треугольник равносторонний
2)(180°-70°):2=55°-угол С и угол F ( так как треугольник равнобедренный)
3)90°-30°=60°- угол К(так как треугольник прямоугольный)
4)180°-(20°+30°)=130°- угол N
5)90°-60°=30° - угол Р(так как треугольник прямоугольный)
6)угол С-40°; угол АВС 100°; угол АВЕ 80°
7)угол В 75°
8)угол РМО 40°; угол Р 75°
9) угол PAL 60°; угол L 60°; угол Р 60°
10угол KFC 130°; угол В 65°; угол С 65°
11) угол ОВС 40°; угол К 50°; угол КВО 80°
12) угол АРС 55°; угол С 55°
13) угол В 50°; BCL 100°
14) -
15) угол MON 75°; угол КО~ 75°; угол ~ 60°; угол К 45°