Плоскости a и p проводятся параллельно стенке MN треугольника moN. Плоскость a пересекает стену Ohm в точке E, стена ON пересекает точку K, а плоскость B пересекает точки F и L. соответственно. Если OF = 8 см, EF = 5 см, EK = 3 см, найдите длину отрезка FL.
1) Для треугольника есть вот такая формула нахождения площади - половина стороны умноженная на высоту, к ней проведённую. При этом неважно, какую сторону взять - площадь должна получатся одна и та же. Это означает, что если у нас есть две одинаковые высоты, то что бы площади получались одни и те же, каждая из этих высот должна умножатся на одно и то же число - значит, раз есть две одинаковые высоты, то есть и две одинаковые стороны - отсюда треугольник равнобедренный.
2) BH – медиана треугольника , ΔMBE – равнобедренный, АМ = СЕ - вот эти утверждения верные.
Відрізки АВ, АС та АD попарно перпендикулярні. Точка М – середина відрізка ВС. Знайти довжину відрізка DМ, якщо AB = 6 см, АС = 8 см, АD = 12 см.
Дано: AB⊥ AC ; DA ⊥ AB ,DA ⊥ AC ;
MA =MB = BC/2 ;
AB = 6 см, АС = 8 см, AD =12 см.
-----------------
DM - ?
ответ: 13 см.
Решение : Плоскости треугольников ABC. ABD и ACD взаимно перпендикулярные плоскости ( допустим , соответственно горизонтальная , фронтальная , профильная плоскости)
DA ⊥AB , DA ⊥AC ⇒ DA ⊥ пл(ABC) и следовательно DA ⊥ AM
Из ΔDAM (по т. Пифагора) : DM =√(AD²+AM²) =√(12²+AM²)
* * * 6 ; 8 ; 10 || 2*3 ; 2*4 ; 2*5 * * *
( || MA = MB= BC/2 || AM медиана в прямоугольном прямоугольнике BAC, проведенной к гипотенузе BC из прямого угля ∡BAC )
AM=BC/2 ( медиана проведенной из прямого угля равно половине гипотенузы ) BC =√(AB² +AC²)= √(6²+8²) =√(36+64) =√(100 =10 (см)
AM = 5 см .
Окончательно DM =√(12²+5²) = √(144+25) = √169 =13 (см).
* * * Снова 5 ; 12 ; 13 _ Пифагора тройка * * *