Площини альфа і бета паралельні. точки а і б лежать у площині альфа, точки с і д у площині бета. відрізки ac і bd перетинаються в точці о. знайдіть відрізок ab, якщо cd = 32 см, ac : ao = 7: 3?
Сторона вписанного правильного многоугольника образует с радиусами описанной около него окружности равносторонний треугольник. В нашем случае это треугольник с боковыми сторонами, равными 4√3 и основанием, равным 12см. По теореме косинусов найдем угол при вершине этого треугольника: Cosα = (b²+c²-a²)/2bc. (α - между b и c). В нашем случае: Cosα=(2*(4√3)²-12²)/(2*4√3)²=-48/(2*48)=-(1/2). То есть центральный угол тупой и равен 120°. Следовательно, число сторон нашего вписанного многоугольника равно 360°/120°=3. Это ответ.
P.S. Можно проверить по формуле радиуса описанной около правильного треугольника окружности: R=(√3/3)*a. В нашем случае R=(√3/3)*12=4√3, что соответствует условию задачи.
В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
В нашем случае это треугольник с боковыми сторонами, равными 4√3 и основанием, равным 12см. По теореме косинусов найдем угол при вершине этого треугольника:
Cosα = (b²+c²-a²)/2bc. (α - между b и c). В нашем случае:
Cosα=(2*(4√3)²-12²)/(2*4√3)²=-48/(2*48)=-(1/2).
То есть центральный угол тупой и равен 120°.
Следовательно, число сторон нашего вписанного многоугольника равно 360°/120°=3. Это ответ.
P.S. Можно проверить по формуле радиуса описанной около правильного треугольника окружности: R=(√3/3)*a. В нашем случае
R=(√3/3)*12=4√3, что соответствует условию задачи.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.