если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то такие прямые скрещивающиеся.
Прямая DC лежит в плоскости (ABC), прямая АВ₁ эту плоскость пересекает в точке А, не лежащей на прямой DC, значит прямые АВ₁ и DC скрещивающиеся по признаку.
2.
Признак параллельности прямой и плоскости:
если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости.
DC и AB параллельны как противоположные стороны параллелограмма, АВ лежит в плоскости (АА₁В₁), значит DC параллельна плоскости (АА₁В₁) по признаку.
3.
Проведем DC₁. Докажем, что АВ₁║DC₁:
AD║BC, AD = BC, BC║B₁C₁, BC = B₁C₁ как противоположные стороны параллелограммов, значит
AD║B₁C₁ и AD = B₁C₁, следовательно AB₁C₁D - параллелограмм.
Тогда АВ₁║DC₁. DC₁ ⊂ (DCC₁), значит АВ₁║(DCC₁) по признаку параллельности прямой и плоскости.
Біріншісін пайдаланып сөйлемдер құрап жаз
шартты және егер ол болмаса.
Егер сіз ерте келсеңіз (сіз / келсеңіз),
маған орын үнемдейсің бе (сен / құтқарасың)?
1
(веб-сайт / ашық емес)
(сізде бар)
пароль
2 Өтінемін
(сен маған қоңырау шал)
(сіз / таба аласыз) менің әмияным?
3
(менің ата-анам / бермейді)
маған кез-келген қалта ақшасы
(1 / өту) менің емтихандарым.
4
(жаңбыр / жаңбыр),
(біз ойнамаймыз) саябақта футбол.
5
(сіз / тәжірибе) көбірек,
(сіз / алмайсыз) ішіне
команда.
Анель 6
(1 / қоңырау шалмаған) сіз
(біз / жетеміз) үйге
кеш. Мен сені оятуды қаламаймын.
7
(көбірек адам / дауыс)
(ол / жоғалтады)
бұл жолы,
сайлау
8
Челси
char
(не / не)
(олар ұпай жинамайды)
Иә, жеткілікті мақсаттар
1. Прямые АВ₁ и DC скрещивающиеся
2. DC ║ (AA₁B₁)
3. АВ₁ ║ (DСС₁)
Объяснение:
1.
Признак скрещивающихся прямых:
если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то такие прямые скрещивающиеся.Прямая DC лежит в плоскости (ABC), прямая АВ₁ эту плоскость пересекает в точке А, не лежащей на прямой DC, значит прямые АВ₁ и DC скрещивающиеся по признаку.
2.
Признак параллельности прямой и плоскости:
если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости.DC и AB параллельны как противоположные стороны параллелограмма, АВ лежит в плоскости (АА₁В₁), значит DC параллельна плоскости (АА₁В₁) по признаку.
3.
Проведем DC₁. Докажем, что АВ₁║DC₁:
AD║BC, AD = BC, BC║B₁C₁, BC = B₁C₁ как противоположные стороны параллелограммов, значит
AD║B₁C₁ и AD = B₁C₁, следовательно AB₁C₁D - параллелограмм.
Тогда АВ₁║DC₁. DC₁ ⊂ (DCC₁), значит АВ₁║(DCC₁) по признаку параллельности прямой и плоскости.