Площадь параллелограмма равна 45см2, а его периметр равен 44 см. Высота, проведённая к одной из его сторон, в 5 раза меньше, чем эта сторона. Вычисли:
1) данную высоту;
2) сторону, к которой она проведена;
3) вторую сторону параллелограмма.
ответы:
1) высота равна
см;
2) сторона, к которой проведена высота, равна
см;
3) вторая сторона равна
см.
Рассмотрим треуг CDE - <Е= 180-(90+30) = 180-120=60°
по условию EF - биссектриса, которая делит угол E пополам, следовательно <CEF = <FED = 60/2 = 30°
У равнобедренный треуг углы при основании равны,
у нас <DEF=<FDE=30°, значит треуг DEF - равнобедренный.
сравнить CF и DF
Рассмотрим треуг FCE - прямоуг, <C=90 (по условию)
<CEF=30, а по свойствам треугольника напротив угла в 30° лежит каткт, равный половине гипотенузы. т.е. CF=1/2 EF. а в предыдущем задании мы доказали, что треуг равнобедренный и EF=DF, значит CF=1/2 DF
и значит CF < DF
1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
в) по тригонометрическим формулам КА= 6*sin противолежащего угла= 6*sin 60=6*√3\2= 3√3см
3) рассмотрим ΔМКА
а) треуг прямоуг (высота)
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
ответ:6